

PB98-130099

# STATISTICAL PROCEDURES TO DETERMINE SEASONAL FACTORS

## FOR TRAFFIC VOLUME MONITORING IN WEST VIRGINIA

Majid Jaraeidi, Ph.D. Wafik Iskander, Ph.D. David R. Martinelli, Ph.D. Traci Thomas, B.S.I.E.

Harley O. Staggers National Transportation Center College of Engineering and Mineral Resources West Virginia University Morgantown, West Virginia

> Final Report October, 1997

Sponsored by the U.S. Department of Transportation Federal Highway Administration and the West Virginia Division of Highways.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is designated under the sponsorship of the U.S. Department of Transportation and the West Virginia Division of Highways, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

This report does not constitute a standard, specification, or regulation. The contents do not necessarily reflect the official views or policies of the State or Federal Highway Administration.

|  | · |  |   |
|--|---|--|---|
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  |   |
|  |   |  | • |

## STATISTICAL PROCEDURES TO DETERMINE SEASONAL FACTORS

## FOR TRAFFIC VOLUME MONITORING IN WEST VIRGINIA

Majid Jaraeidi, Ph.D. Wafik Iskander, Ph.D. David R. Martinelli, Ph.D. Traci Thomas, B.S.I.E.

Harley O. Staggers National Transportation Center College of Engineering and Mineral Resources West Virginia University Morgantown, West Virginia

> Final Report October, 1997

Sponsored by the U.S. Department of Transportation Federal Highway Administration and the West Virginia Division of Highways.

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the information presented herein. This document is designated under the sponsorship of the U.S. Department of Transportation and the West Virginia Division of Highways, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

This report does not constitute a standard, specification, or regulation. The contents do not necessarily reflect the official views or policies of the State or Federal Highway Administration.

|  | · |  |  |
|--|---|--|--|
|  | · |  |  |
|  | · |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

| 1. Report No.                                                                                                                    | 2. Government Accession No. | 3. Recipient's Catalog No.                                  |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------|
| 4. Title and Subtitle Statistical Procedures to Defor Traffic Volume Monitoring                                                  |                             | 5. Report Date October 1997 6. Performing Organization Code |
| 7. Author(s) Majid Jaraiedi, Ph. Wafik Iskander, Ph.                                                                             |                             | 1                                                           |
| 9. Performing Organization Name and Address West Virginia University Dept. of Industrial and Mgmt.                               | Systems Engineering         | 10. Work Unit No. (TRAIS)  11. Contract or Grant No.        |
| Morgantown, WV 26505-6107  12. Sponsoring Agency Name and Address West Virginia Department of Tr US Department of Transportation | -                           | 13. Type of Report and Period Covered Final                 |
| Administration  15. Supplementary Notes Sponsored by a grant from U.S.                                                           |                             | 14. Sponsoring Agency Code                                  |

#### 16. Abstract

West Virginia Division of Highways (WVDOH) collects traffic counts at selected sites throughout the state. Some of these counts are continuously taken at permanent sites and some are from short duration counts. Clearly, it is extremely important for the WVDOH to organize the massive data collected into a usable format and have the capability to generate 'information' that can be used by planners and decision makers.

Administration and West Virginia Division of Highways

In this research, data collected at permanent sites were statistically analyzed to reveal similarities in traffic patterns and to 'cluster' similar counters in smaller groups. These clusters can be further analyzed to point out more details and reveal the nature of their 'seasonality patterns.' The range of options available in terms of the variety and details of statistical analysis is vast. However, practicality and the potential for usefulness of information generated must always guide our efforts in data manipulation and analysis. Also, keep in mind that in spite of mathematical rigor associated with the statistical analysis performed, personal judgement in some instances must be used to make sure that results are reasonable and useful.

Results of the clustering used to compute the seasonal factors are shown in Appendix 8. This appendix must be consulted to convert the short term count taken at a certain location to the AADT for that location.

| 17. Key Words  Seasonal Factors, Traffic ( AADT, Cluster Analysis | Count, | 18. Distribution Statement       |                  |           |
|-------------------------------------------------------------------|--------|----------------------------------|------------------|-----------|
| 19. Security Classif. (of this report) Unclassified               | ľ      | Classif. (of this page) assified | 21. No. of Pages | 22. Price |

## **ACKNOWLEDGMENTS**

This research project, sponsored by the U.S. Department of Transportation Federal Highway Administration and the West Virginia Department of Transportation, Division of Highways, was completed with the assistance of many individuals and organizations. The investigators wish to express their thanks to those identified below, as well as, all of the other individuals and organizations that supported the project.

The support provided by the West Virginia Division of Highways is appreciated. Mr. Jerry Legg deserves special thanks for his overall guidance and monitoring of the project. His comments throughout the project were very helpful to us. The authors would also like to acknowledge Mr. Larry Griffith for his assistance and comments.

Comments and ideas that the authors received from Mr. Jack Justice of the FHWA were very helpful and are highly appreciated.

## **TABLE OF CONTENTS**

| TECHNICA | AL REPORT DOCUMENTATION ii                                 |
|----------|------------------------------------------------------------|
| ACKNOWI  | LEDGMENTS iii                                              |
| CHAPTER  | ONE1                                                       |
| 1.1      | INTRODUCTION1                                              |
| 1.2      | RESEARCH OBJECTIVES2                                       |
| 1.3      | RESEARCH METHODOLOGY                                       |
| 1.4      | ORGANIZATION3                                              |
| CHAPTER  | TWO4                                                       |
| 2.1      | BACKGROUND4                                                |
| 2.2      | ADJUSTMENT FACTORS7                                        |
| 2.3      | DATA COLLECTION IN WEST VIRGINIA11                         |
| 2.4      | DATA PREPARATION14                                         |
| CHAPTER  | THREE                                                      |
| 3.1      | INTRODUCTION23                                             |
| 3.2      | STATISTICAL ANALYSIS                                       |
| 3.3      | CLUSTER ANALYSIS                                           |
| 3.4      | CONSIDERATION OF TRAFFIC VOLUMES                           |
| CHAPTER  | FOUR                                                       |
| 4.1      | INTRODUCTION                                               |
| 4.2      | Data Importation32                                         |
| 4.3      | Factor Calculation for Individual Sites34                  |
| 4.4      | Cluster Analysis                                           |
| 4.5      | Factor Calculation for Clusters                            |
| 4.6      | Step by Step Procedure to Read in Data and Compute Factors |
| CHAPTER  | FIVE 42                                                    |
| 5.1      | CONCLUSIONS42                                              |
| DEFEDEN  | CES                                                        |

| APPENDIX 1                                                         |
|--------------------------------------------------------------------|
| ATR Data Sorted Based on MCV to Identify Recreational Sites        |
| APPENDIX 2                                                         |
| SAS Program for the First Cluster                                  |
| APPENDIX 3                                                         |
| Results of the First Cluster Analysis                              |
| APPENDIX 4                                                         |
| SAS Program to Perform the Second Cluster Analysis                 |
| APPENDIX 5                                                         |
| Results of the Second Cluster Analysis                             |
| APPENDIX 6                                                         |
| A Sample of the Input CSV File53                                   |
| APPENDIX 7                                                         |
| Listing of Excel Macro to Input Traffic Counts and Compute Factors |
| APPENDIX 8                                                         |

## LIST OF TABLES

| TABLE 2.1 | List of Traffic Counting Stations and Their Location       | 13 |
|-----------|------------------------------------------------------------|----|
| TABLE 2.2 | Monthly Factors                                            | 16 |
| TABLE 2.3 | Missing Observations                                       | 18 |
| TABLE 2.4 | Estimation of Missing Observations                         | 20 |
| TABLE 2.5 | Monthly Factors With Estimated Missing Observations        | 21 |
| TABLE 3.1 | Tentative Scheme for ATR Clustering                        | 25 |
| TABLE 3.2 | Adjusted Tentative Scheme for ATR Clustering               | 26 |
| TABLE 3.3 | Values Assigned to Functional Classification Codes         | 27 |
| TABLE 3.4 | Modified Tentative Scheme for ATR Clustering               | 28 |
| TABLE 3.5 | Modified Clusters                                          | 29 |
| TABLE 3.6 | Cluster Results Obtained with Traffic Volume Consideration | 31 |

#### **CHAPTER ONE**

#### 1.1 INTRODUCTION

One of the most fundamental tools in planning, design and management of highway systems in any state is the traffic volume calculation. Decisions on the allocation of highway funds to various highway development projects depend on the projected traffic volume and the type of usage made of a highway. Accurate forecasts of future growth in highway traffic is an essential component in making decisions whether to construct a new highway or to expand and operate existing highways more efficiently. These forecasts are based on traffic counts made during the year at various locations in the state. The raw counts obtained by the Automatic Traffic Recorders (ATR's) must be processed and statistically analyzed to yield annual vehicle miles of travel (AVMT) and average annual daily traffic (AADT). AVMT is basically a system measure, while AADT is a point-specific measure.

Several publications by the Federal Highway Administration deal with these specific issues as part of the Highway Performance Monitoring System (HPMS) in each state. In Reference 1, Traffic Monitoring Guide, it is mentioned that statistical procedures must be used to estimate AADT. These procedures involve seasonal (monthly) factors, adjustments for day of week, axle correction factors, and growth factors. Section 3 of the Guide is devoted to the explanation of some of the statistical methods that can be used to develop various elements of a traffic volume monitoring system. These procedures are compatible with those outlined in Reference 2, Guide for Traffic Counting Manual, by the FHWA. It is important to emphasize that the accuracy of the AADT and

AVMT estimates are directly related to the appropriateness and correct implementation of statistical procedures used to estimate the seasonal factors that go into the calculation of these estimates.

## 1.2 RESEARCH OBJECTIVES

Specific objectives of this research are:

- 1. To investigate statistical procedures that can be used to calculate seasonal factors and day of week adjustments.
- 2. To identify data elements that must be collected and used as inputs to such procedures.
- 3. To streamline the process of development of seasonal factors to expand short-term counts to AADT, as specified in Section 3, Chapter 2 of the Traffic Monitoring Guide (1).
- 4. To provide statistical help to the personnel at WVDOH Planning department involved in traffic volume estimation to enable them to perform the appropriate analyses and implement and maintain the systems developed.

## 1.3 RESEARCH METHODOLOGY

In order to meet the project objectives, the following research plan was followed.

- 1. Meet with WVDOH in Transportation Planning to clearly identify the specifications and exact capabilities desired to be included in the proposed procedures.
- 2. Perform a thorough search of the literature on seasonal traffic factors, their use in traffic volume forecasting and all relevant FHWA publications that deal with this subject.
- 3. Investigate the seasonal traffic factors and adjustment procedures that are currently used in states that are mostly rural.

- 4. Develop guidelines and procedures for data collection and analysis for the calculation of seasonal factors. These procedures will be compatible with the recommendations and procedures suggested by the FHWA (Reference 1), and others that may apply. Also, the research team will coordinate this step with WVDOH Planning Division personnel such that all procedures, to the maximum extent possible, make use of the data being currently retrieved from the ATR's.
- 5. Document the system developed such that it can be implemented and maintained by the WVDOH, Transportation Planning personnel.

## 1.4 ORGANIZATION

This report is organized into four chapters. Each chapter has a different area of focus. Chapter Two contains some background information on traffic count elements, data description, and a brief discussion of the experiences of two neighboring state highway agencies.

Chapter Three contains the methodology used in the statistical analysis and the results of the research. A discussion of statistical procedures for determining the seasonal factors is included in this chapter.

Chapter Four consists of recommendations and conclusions. Recommendations for future work will also be discussed.

#### **CHAPTER TWO**

#### 2.1 BACKGROUND

Highway traffic monitoring is the measurement, summarization, and reporting of vehicle characteristics. There are critical decisions related to each of these activities. Effective highway traffic monitoring ensures that road construction projects are appropriately designed, traffic safety problems are accurately identified, and highway funds are equitably allocated.

Traffic data are used in a variety of ways by state departments of transportation. Decisions for the design and engineering of highways, methods of improving highway safety and usage, environmental and air quality considerations, can (and should) all be based on information obtained from traffic counts. Also, a database of traffic data in a state can be used to provide information that can be used for business location and industrial expansion. Service industries, such as restaurants and motels, depend heavily on the traffic volume and accuracy of current data, and forecasts for future growth is of special interest to them.

Traffic volume estimates are calculated in various manners. Generally, estimates are derived from data obtained by both permanent and temporary traffic counting stations. Statistically, this estimation can be quite complicated, leaving even the brightest statisticians disagreeing over practices and procedures. More importantly though, is the fact that these statisticians may not be dealing with accurate data in the first place, making it nearly impossible to generate accurate forecasts.

Various traffic counting devices and manual counts will not always yield identical results.

Differences in clock time, sensitivity of recording devices to vehicle pass-over, multiaxle vehicle

proportions, and mechanical equipment failure or malfunction all combine to produce error (9). In August of 1981, a comparison of the following four counting methods was conducted by the New York Department of Transportation Planning Division at a single location for a 24 hour period (9):

- 1. manual counting,
- 2. portable road-tube counters,
- 3. fixed mechanical continuous counter using induction loops, and
- 4. a telephone-based counter system using the same induction loops.

## The findings of this study were:

- 1. There is no such thing as an accurate traffic count; clock error, machine error, percentage of trucks, and other factors are likely to cloud the reliability of any count.
- 2. Manual counts are likely to contain considerable errors, particularly if conducted by inexperienced or unsupervised personnel.
- Counts taken with a road-tube counter will overestimate traffic volume depending on the
  percentage of trucks. Such counts should be adjusted for the multiaxle truck percentage and
  checked closely for clock accuracy.
- 4. Counts should be taken for at least 24 hours to minimize overall clock error. Even during longer count periods (one day to three weeks), counters are not likely to give similar results, but the differences will be smaller.
- 5. Both the continuous counter and the telemetry system show very similar, but not identical results.

Hence, the accuracy of the raw counts is certainly an area of concern.

Another difficulty is that current traffic monitoring practices in the United States are very

diverse (3). These diverse practices stem, in part, from belief in the following three myths: there is no need to establish traffic monitoring standards because current practices are typically consistent; there is no need to establish standards because there would not be a substantial difference in the resulting traffic summary statistics; and there is no need to establish standards because the differences in resulting summary statistics would not have a significant impact on the applications of the statistics (4). Due to these diverse practices, it is very hard for much information to be shared between agencies.

If various states and agencies were able to share their knowledge, traffic monitoring in the United States would reach a new level of efficiency. For this to occur, a commitment must be made to honor Truth-In-Data practices. Truth-In-Data is the documentation and disclosure of the procedures used to collect, edit, and summarize traffic data. It is also the estimate of statistical confidence in reported traffic summary statistics (5). While it is often believed that honoring Truth-In-Data practices makes little practical difference, this is simply not true. In New Mexico, a study was conducted to determine what effects data integrity have on the analysis of the underlying distribution of the data and on other summary statistics. The results suggested that traffic volume summary statistics may be distorted by assumptions concerning equipment failure insignificance, data imputation, and data smoothing (6).

In the Traffic Monitoring Guide, the Federal Highway Administration has outlined procedures for the development of a statistical sampling program for the estimation of traffic volume, annual vehicle miles of travel, annual average daily traffic, vehicle classification, and truck weight with known reliability (1). The development of this sampling program has clearly defined steps:

- 1. Definition of desired objectives
- 2. Establishment of cost limits or precision requirements
- 3. Definition of the universe to be sampled
- 4. Definition of sampling element
- 5. Determination of reporting stratification desired
- 6. Estimation of sampling element variability
- 7. Development of sample design
- 8. Implementation of sample design
- 9. Development of estimation procedures

While the Guide acknowledges that this task can be enormously complex, the results are quite important in pursuing the goal of highway efficiency.

## 2.2 ADJUSTMENT FACTORS

Three basic types of traffic-counting operations are commonly employed by state highway departments to obtain annual daily traffic estimates (7). Continuous counts are taken by ATR's, but only at a limited number of locations due to the significant equipment expense. Secondly, in some states, intermittent or seasonal-control counts are taken 4, 6, or 12 times a year for durations varying from 48 hours to 2 weeks. The greatest amount of traffic data, however, results from short coverage counts taken for durations varying from 24 hours to 7 days. It is necessary to utilize these coverage counts to arrive at AADT estimates for the many locations on the highway network where continuous recorders and seasonal-control stations are not operated (7).

Historically, highway departments have employed some factoring procedure for adjusting

coverage counts to form estimates of AADT. The general procedure is to somehow relate all sections of highway to a continuous counter or group of continuous counters. Then, data obtained from the permanent counter(s) are used to calculate factors, which are applied to the data generated at the corresponding coverage count sites.

One specific procedure for estimating annual average daily traffic from short-term traffic counts for rural roads carrying 500 or more vehicles per day has been advocated by the U. S. Bureau of Public Roads (BPR), in its Guide for Traffic Counting Manual published in 1965. The BPR procedure was based on grouping together the permanent counting stations that have similar annual patterns of monthly traffic adjustment factors (8). The continuous counting stations are grouped in such a way that, for the stations within a single group, the difference between the smallest and largest monthly factor for any month considered does not exceed 0.20 (9). All sections of the rural highway system are then assigned to one of these groups and the appropriate adjustment factor is applied to the short-term counts (8).

A similar procedure used by the Missouri State Highway Department has produced useful results. This method, is highly subject to individual judgement. The individual needing the estimate of AADT at the location of a coverage count selects a continuous count station which he/she believes to have a similar annual pattern of monthly traffic variations (8). The factors are then calculated from the continuous data and applied to the short-term data in the same way as the BPR procedure. The BPR's procedure has the advantages of objectivity and a statistical measure of accuracy.

Again, a similar procedure is employed by the Pennsylvania Department of Transportation (10). They employ sixty ATR's, located at various points across the state. These sites are categorized into one of ten Traffic Pattern Groups (TPG's). The TPG's are based on functional

classification, geographic area, and urban/rural characteristics. The grouping of the data collected at the ATR sites provides a means to compute daily, monthly, and other factors by functional classification and geographic location. Specifically, these factors are computed by group, for each day of the week for each month. All 24-hour short-term-counts are associated with one of the ten groups and then processed to an Annual Average Daily Traffic (AADT) through the application of a "day of week by month" factor. If the short-term count to be analyzed was taken earlier than the current year, a growth factor is also applied to project the older data to a representative current year estimate. If an estimate of peak-hour volume is desired, the k-factor (Design Hour Volume Factor) would also be applied.

In general, adjustment factors can come in the form of annual growth factors, day-of-week factors, or monthly factors. Axle correction factors may also be desirable. These factors are simply ratios of AADT's, taken from continuous count stations, at different points in time. The annual growth factor is a ratio of AADT for year t to AADT for year t-1. The day-of-week factor is a ratio of average AADT to average AADT for a certain day of the week. Similarly, the monthly factor is simply a ratio of AADT to average AADT for a certain month. When computing monthly factors, it might be advantageous to calculate factors with and without weekends.

## 2.3 APPLICATION OF FACTORS TO SHORT-TERM COUNTS

As part of an in-depth evaluation for the Washington State Department of Transportation (WSDOT), procedures were developed to derive estimates of annual average daily traffic (AADT) from short-duration axle counts, in hopes of realizing considerable cost savings by using small sample sizes, consisting of only three days (11). The author states that "A rigorous statistical

approach to statewide data collection and program design permits the estimation of data precision and can provide a rational basis to assist in allocating limited resources among the various possible data collection activities" (11). The model, which is quite simple, is as follows:

$$AADT = VOL(F_S)(F_A)(F_G)$$

where VOL = average 24-hr volume from a standard WSDOT 72-hr Tuesday-Thursday short count

 $F_s$  = seasonal factor for the count month

 $F_A$  = weekday axle correction factor if VOL is in axles; equal to 1 if VOL is in vehicles

 $F_G$  = growth factor if VOL is not a current year count; equal to 1 otherwise

In Pennsylvania they currently have 63 permanent, volume-counting ATR sites, which are categorized into ten traffic-pattern groups. The ten groups are as follows: urban interstate, rural interstate, urban principal arterial, rural principal arterial, urban minor arterials and collectors, north rural minor arterial, central rural minor arterial, north rural collector, central rural collector, and special recreational. (They also have eight sites that collect both volume and vehicle classification data, and one site that also collects weight data.) After the ATR data is edited and unknown data imputed, seasonal adjustment factors are computed for each group, by day of the week for each month. When a 24-hour short-term count is made, the site of the count is associated with one of the ten groups. The seasonal adjustment factor(s) for that group are then applied to the short-term count to obtain AADT estimates.

## 2.3 DATA COLLECTION IN WEST VIRGINIA

West Virginia Division of Highways (WVDOH) maintains 51 ATR sites. The counts collected by these ATR's are accumulated and stored for further processing. Daily and monthly factors are then calculated for each site. The sheer volume of these data necessitated the development of a management information system for summarizing data, editing, and generating appropriate reports. This MIS is currently undergoing its final stages of testing and will be put into production mode in the near future.

For the purposes of this project, however, data for 1995 calendar year was used. The data set consisted of the traffic count for 51 sites. Each site was also assigned a "Functional Classification Code" based on the standard definition given in the Traffic Monitoring Guide (1), and as designated by the WVDOH. Highways are classified into Rural and Urban categories each having their own sub-categories. The following listing is reproduced from the Traffic Monitoring Guide.

#### **RURAL**

| Code | Functional Classification       |
|------|---------------------------------|
| 01   | Principal Arterial - Interstate |
| 02   | Principal Arterial - Other      |
| 06   | Minor Arterial                  |
| 07   | Major Collector                 |
| 08   | Minor Collector                 |
| 09   | Local System                    |

## **URBAN**

| 11 | Principal Arterial - Interstate                    |
|----|----------------------------------------------------|
| 12 | Principal Arterial - Other Freeways or Expressways |
| 14 | Principal Arterial - Other                         |
| 16 | Minor Arterial                                     |
| 17 | Collector                                          |
| 19 | Local System                                       |

The Traffic Monitoring guide prescribes that grouping of the ATR's be based on various criteria including statistical and expert opinion. However, it also recommends to use at least the following number of groups:

| <b>Description</b> | Functional Code |
|--------------------|-----------------|
| Interstate Rural   | 1               |
| Other Rural        | 2, 6, 7, 8      |
| Interstate Urban   | 11              |
| Other Urban        | 12, 14, 16, 17  |
| Recreational       | Any             |

To identify an ATR site as recreational, one must examine the pattern of change in traffic volume during various months of the year. The coefficient of variations for these stations is usually high (more than 25%) which indicates a high degree of seasonality.

Table 2.1, below, shows a list of the counting stations, as extracted from the 1995 worksheet used for this project. The functional code (FC) for each station is also given. Note that stations 401 and 402 are installed on the north-bound and south-bound lanes of I-77 in Wood county. Also, stations 351 and 352 are on the west-bound and east-bound lanes of US 52 in McDowell county. For the purposes of statistical analysis, data for these stations were combined as if there is only one station at each location.

TABLE 2.1 List of Traffic Counting Stations and Their Location

| FC | Station ID | COUNTY     | LOCATION                  |
|----|------------|------------|---------------------------|
| 1  | 1          | Summers    | I-64, 1.0 MI. W. OF WV 20 |
| 1  | 2          | Cabell     | I-64, 1.5 M W OF CO 60/89 |
| 1  | 3          | Kanawha    | I-77, 2.1 MI N. OF CO 15  |
| 1  | 401        | Wood       | I-77 NB, 1.0 M S OF WV 14 |
| 1  | 402        | Wood       | I-77 SB, 1.0 M S OF WV 14 |
| 1  | 5          | Braxton    | I-79, 0.8 MI. N. OF US 19 |
| 1  | 6          | Harrison   | I-79, 0.2 M S OF CO 73/73 |
| 2  | 7          | Tyler      | WV 2, 2.9 MI. OF CO 2/2   |
| 2  | 8          | Nicholas   | US 19 .06 M OF CO 19/45   |
| 2  | 9          | Wood       | US 50, 1.1 MI. E. OF I-77 |
| 2  | 10         | Greenbrier | US 60, 0.1 M W OF CO 60/4 |
| 2  | 11         | Boone      | US 119, 0.8 MI. S OF WV 3 |
| 6  | 12         | Harrison   | WV 131, 1.2 M OF US 50    |
| 6  | 13         | Wayne      | WV 152, 0.4 M OF CO 52/1  |
| 6  | 14         | Lewis      | US 33, 0.4 MI. E OF CO 13 |
| 6  | 15         | Putnam     | US 35, 0.3 MI. OF CO 27   |
| 6  | 16         | McDowell   | US 52 0.5 M E OF CO 52/17 |
| 6  | 17         | Logan      | US 119, 1.1 MI S OF WV 10 |
| 6  | 18         | Rndolph    | US 219, 1.5 MI OF CO 56   |
| 7  | 19         | Jackson    | CO 21 0.4 M W OF CO 33/12 |
| 7  | 20         | Grant      | US 220 1.5 M S OF 220/4   |
| 7  | 21         | Pendelton  | WV 28, 0.2 MI. OF US 33   |
| 7  | 22         | Braxton    | US 19 1.5 M OF CO 19/36   |

| 7  | 23  | Raleigh    | US 19, 0.4 M S Of CO 40/2 |
|----|-----|------------|---------------------------|
| 7  | 24  | Ohio       | US 40, 0.2 MI. W OF CO 41 |
| 7  | 25  | Cabell     | US 60, 0.1 M W OF CO 25/1 |
| 11 | 26  | Wayne      | I-64, 1.5 MI. E. OF US 52 |
| 11 | 27  | Kanawha    | I-64, 2.0 MI W OF WV 622  |
| 11 | 29  |            | I-70, 0.5 MI. W. OF US 40 |
| 11 | 30  | Raleigh    | I-77, 0.3 MI. S. OF WV 3  |
| 12 | 31  | Marshall   | WV 2, 0.6 MI. S. OF CO 17 |
| 12 | 32  |            | US 50 0.4 M W OF CO 50/40 |
| 14 | 33  | Cabell     | WV 10, 0.3 MI. S. OF I-6  |
| 14 | 34  | Kanawha    | WV 25, 1.0 MI W OF WV 622 |
| 14 | 351 | McDowell   | US 52WB, 0.6 M W OF CO 29 |
| 14 | 352 | McDowell   | US 52EB, 0.6 M W OF CO 29 |
| 14 | 36  | Kanawha    | US 60, 0.2 MI. W OF CO 85 |
| 16 | 37  | Berkeley   | US 11, 1.5 MI. S OF WV 45 |
| 17 | 38  | Kanawha    | WV 61, 1.4 M S OF I-77 KC |
| 1  | 39  | Cabell     | I-64, 1.0 MI. W. OF WV 34 |
| 16 | 40  | Kanawha    | WV 114, 0.5 M CO 114/1    |
| 16 | 41  | Kanawha    | US 119 0.4 M S CO 119/16  |
| 11 | 42  | Kanawha    | I-64, E. OF KAN. CITY I/C |
| 7  | 43  | Logan      | WV 44, 0.5 MI S OF US 119 |
| 6  | 44  | Boone      | WV 94, 0.3 MI. N. OF WV 3 |
| 7  | 45  | Wetzel     | WV 7, 0.2 MI. E. OF WV 2  |
| 7  | 46  | Randolph   | US 250 0.6 M S OF CO 56/1 |
| 1  | 47  | Mercer     | I-77, 0.9 MI. S 0F WV 112 |
| 6  | 48  | Mercer     | WV 20 0.1 M W OF CO 20/12 |
| 6  | 49  | Pocohontas | WV 92, 2.6 MI. S OF WV 39 |
| 1  | 50  | Berkeley   | I-81, 1.6 MI. S. OF WV 45 |
| 7  | 51  | Nicholas   | WV 20, 0.6 MI. S OF WV 55 |
| 1  | 53  | Preston    | I-68, 1.0 MI. W. OF WV 26 |
|    |     |            |                           |

## 2.4 DATA PREPARATION

As mentioned before, data for this project were provided in the form of a Lotus 123 worksheet that contained the 1995 counts for the permanent sites. At each site, counts were recorded for every day of the year. Given the traffic for each day of the week and each month, it would be possible to compute daily and monthly factors for each site. In some cases, due to factors such as equipment malfunction, there were gaps in the data. In order to be able to count the specific number

of days missing in each month, each day of the week was assigned a number starting with Sunday as day 1. Then, the following steps were taken in sequence:

- 1. The sum of traffic counts for all days of each month were calculated.
- 2. Monthly Average Daily Traffic (MADT) for each month was calculated by dividing the total count for the month by the number of days in that month for which data were available.
- 3. Day-of-the-week factors per month were computed by dividing the MADT for the month by the average traffic count for that day of the week in that month.
- 4. The sum of traffic count for the whole year was computed.
- 5. Annual Average Daily Traffic (AADT) was computed by dividing the total count for the year by the number of days in the year for which data were available at that station.
- 6. Monthly factors (F1 through F12) were calculated as the ratio of AADT to MADT.
- 7. Coefficient of variation (MCV) for the 12 monthly factors was calculated by dividing their standard deviation by their mean (and multiplying by 100). The MCV, which shows the extent of monthly variation at each location, is useful to perform comparison between different locations and to decide whether a certain location can be classified as "recreational."
- 8. The monthly factors for all stations, along with other pertinent information, were tabulated for further analysis. Information presented in Table 2.2, below, is similar to that of Table 3-A-2 in the Traffic Monitoring Guide, page 3-A-3 (Reference 1). In this table, the 12 monthly factors for each location and their mean, MFAC, and the coefficient of variation, MCV, are shown. Missing values are indicated as ( . ).

## **TABLE 2.2 Monthly Factors**

| ATR | FC | F1      | F2    | F3    | F4    | _F5   | F6    | <b>F7</b> | F8    | F9    | F10_  | _F11  | F12   | MFAC  | MCV    |
|-----|----|---------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|--------|
| 01  | 1  | 1.432 1 | .342  | 1.137 | 0.983 | 0.952 | 0.877 | 0.960     | 0.738 | 0.929 | 0.938 | 1.013 | 1.136 | 1.036 | 18.089 |
| 02  | 1  | 1.239 1 | .092  | 0.992 | 0.969 | 0.965 | 0.922 | 0.921     | 0.907 | 0.999 | 0.997 | 1.050 | 1.061 | 1.009 | 8.753  |
| 03  | 1  | 1.422 1 | .299  | 1.234 |       | 0.990 | 0.895 | 0.829     | 0.897 | 0.943 | 1.045 | 1.086 | 1.166 | 1.073 | 16.714 |
| 04  | 1  | 1.391 1 | 1.254 | 0.986 | 0.933 | 0.940 | 0.914 | 0.772     | •     |       |       |       | •     | 1.027 | 19.447 |
| 05  | 1  | 1.475 1 | 1.333 | 1.015 | 0.893 | 0.955 | 0.915 | 0.849     | 0.846 | 0.919 | 0.917 | 1.066 | 1.247 | 1.036 | 19.049 |
| 06  | 1  | 1.133 1 | 1.033 | 0.901 | 0.880 |       |       | •         |       | •     |       |       |       | 0.099 | 10.413 |
| 07  | 2  | 1.211 1 | 1.165 | 1.006 | 0.980 | 0.921 | 0.921 | 0.937     | 0.926 | 0.953 | 0.965 | 1.037 | 1.191 | 1.017 | 10.281 |
| 08  | 2  | 1.513 1 | 1.383 |       | 0.904 | 0.973 | 0.928 | 0.864     | 0.859 | 0.957 | 0.935 | 1.048 | 1.186 | 1.050 | 19.863 |
| 09  | 2  | 1.367   |       | 1.065 | 1.032 | 0.940 | 0.946 | 0.936     | 0.942 | 0.947 | 0.962 | 1.043 | 1.169 | 1.032 | 12.300 |
| 10  | 2  | 1.354 1 | 1.258 | 1.026 | 0.986 | 0.911 | 0.921 | 0.928     | 0.866 | 0.912 | 0.906 | 1.061 | 1.118 | 1.020 | 14.406 |
| 11  | 2  | 1.270   |       |       | ٠     | •     | 0.950 | 1.041     | 0.957 | 1.000 | 1.009 | 1.043 | 0.949 | 1.028 | 9.579  |
| 12  | 6  | 1.031 0 | 0.952 | •     | 1.026 | 1.017 | 0.985 | 1.095     | 0.946 | 1.003 | 0.995 | 1.011 | •     | 1.006 | 3.999  |
| 13  | 6  | 1.217 1 | 1.075 | 0.984 | 0.975 | 0.958 | 0.925 | 0.948     | 0.956 | 0.965 | 0.984 | 1.036 | 1.057 | 1.009 | 7.639  |
| 14  | 6  | . 1     | 1.167 | 1.015 | 1.011 | 0.960 | 0.952 | 0.994     | 0.967 | 0.982 | 0.968 | 1.152 | •     | 1.017 | 7.273  |
| 15  | 6  | 1.250 1 | 1.145 | 0.968 | 0.911 | 0.939 | 1.161 | 0.841     | 0.861 | 0.939 | 0.998 | 1.043 | 1.204 | 1.022 | 12.892 |
| 16  | 6  | 1.234 1 | 1.217 | 0.915 | 0.906 | 0.956 | 0.946 | 0.996     | 0.967 | 0.960 | 0.984 | 1.021 | 0.999 | 1.008 | 10.122 |
| 17  | 6  | 1.149 1 | 1.090 | 0.967 | 0.968 | 0.935 | 0.945 | 0.951     | 0.949 | 0.977 | 1.010 | 1.077 | 1.041 | 1.005 | 6.585  |
| 18  | 6  | 1.254 1 | 1.106 | 0.953 | 1.026 | 0.980 | 0.998 | 0.946     | 0.950 | 0.974 | 0.906 | 1.074 | 1.094 | 1.022 | 9.039  |
| 19  | 7  | 1.278 1 | 1.159 | 0.988 | 0.940 | 0.923 | 0.941 | 0.942     | 0.972 | 0.968 | 0.957 | 0.960 | 1.101 | 1.010 | 10.422 |
| 20  | 7  | 1.210 1 | 1.130 | 0.841 | 0.893 |       |       |           |       | 0.925 | 0.891 | 1.006 | 1.068 | 0.995 | 12.289 |
| 21  | 7  | 1.651   | 1.533 | 1.052 | 0.993 | 0.892 | 0.869 | 0.746     | 0.813 | 0.872 | 0.864 | 1.241 | 1.473 | 1.083 | 27.594 |
| 22  | 7  | •       |       |       | 1.162 | 1.049 | 0.956 | 0.947     | 0.929 | 0.973 | 0.911 | 1.038 | 1.087 | 1.006 | 7.844  |
| 23  | 7  | 1.092   | 1.080 | 0.931 | 0.976 | 0.950 | 0.968 | 1.006     | 0.930 | 0.947 | 0.944 | 1.183 | 1.119 | 1.011 | 8.126  |
| 24  | 7  | 1.266   | 1.175 | 1.012 | 0.976 | 0.903 | 0.916 | 0.928     | 0.924 | 0.941 | 0.965 | 1.113 | 1.150 | 1.022 | 11.398 |
| 25  | 7  | 1.214   | 1.123 | 0.915 | 0.954 | 0.964 | 0.930 | 0.945     | 0.939 | 0.950 | 0.951 | 1.033 | 1.142 | 1.005 | 9.477  |
| 26  | 11 | 1.183   | 1.158 | 1.241 | 1.133 | 0.991 | 0.926 | 0.897     | 0.872 | 0.939 | 0.943 | 1.006 | 1.102 | 1.032 | 11.571 |
| .27 | 11 | 1.184   | 1.293 |       |       | 0.962 | 0.916 | 0.920     | 0.905 | 0.965 | 0.962 | 1.049 | 1.115 | 1.027 | 12.092 |
| 30  | 11 | 1.435   |       |       |       |       |       |           |       |       |       |       |       |       | 19.481 |
| 31  | 12 | 1.311   | 1.167 | 0.891 | 0.971 | 0.807 | 0.938 | 0.997     | 0.934 | 0.957 | 0.984 | 1.102 | 1.304 | 1,030 | 14.744 |

```
12.021
                                    0.966 0.936 0.942 0.943 0.954 0.966 1.028 1.171 1.029
      14
            1.345 1.110 0.961 .
33
            1.015 0.981 0.908 0.923 0.906 0.952 1.187 1.080 1.015 0.992 1.038 1.027 1.002
                                                                                              7.636
34
      14
            1.353 1.108 0.997 0.980 0.984 0.954 0.950 0.968 1.008 1.029 1.010 1.001 1.028
                                                                                             10.262
35
      14
            1.148 1.086 0.972 0.968 0.926 0.915 0.954 0.923 0.950 0.992 1.113 1.158 1.009
                                                                                              8.641
36
      14
                                                                                              8.424
            1.221 1.089 1.006 0.976 0.965 0.971 0.995 0.882 0.945 1.003 1.086 1.097 1.020
37
      16
            1.155 1.167 0.962 0.952 0.948 0.926 0.965 1.005 0.981 0.999 1.026 1.043 1.011
                                                                                              7.356
38
      17
                                                                                             10.643
            1.212 1.128 1.024 1.004 0.970 0.912 0.899 0.907 0.927 0.913 0.981 1.187 1.005
39
       1
                                                                                              5.907
            1.130 1.012 0.920 1.005 0.932 0.930 0.991 1.038 1.023 0.994 1.066 1.061 1.008
      16
40
                                                                                              8.030
            1.160 0.970 0.960 0.972 0.933 0.909 0.951 0.942 0.971 1.034 1.088 1.144 1.003
      16
41
                                                0.813 0.851 0.922 0.929 1.037 1.232 1.005
                                                                                             13.745
            1.195 1.205 0.953 0.934 0.985 .
42
      11
            1.168 1.074 0.948 1.003 0.951 0.958 0.989 0.970 0.984 0.992 1.011 1.109 1.013
                                                                                              6.492
43
       7
                                                                                              9.062
            1.004 0.970 0.955 0.942 0.915 1.271 0.996 0.943 0.957 0.969 1.034 1.069 1.002
44
       6
            1.162 1.113 0.962 0.962 0.938 0.953 1.007 0.852 0.973 0.971 1.132 1.211 1.020
                                                                                             10.163
45
            1.381 1.721 1.308 0.924 0.912 0.883 0.813 0.858 0.953 0.896 1.144 1.733 1.127
                                                                                             28.278
       7
46
            1.266 1.181 0.907 0.811 1.080 0.876 0.766 0.814 1.340 1.122 1.011 1.080 1.021
                                                                                             17.668
47
       1
            1.616 1.147 0.972 0.972 0.953 0.943 0.978 0.935 0.954 0.940 1.108 0.984 1.042
                                                                                             17.724
       6
48
            1.273 1.024 1.001 1.098 1.127 1.104 0.975 0.899 1.040 0.931 0.963 0.941 1.031
                                                                                              9.780
       6
49
                                                                                             11.810
                                                                                     1.028
            1.268 1.214 1.050 0.950 0.985 0.963 0.938 0.893 0.989 .
50
       1
            1.167 1.168 1.079 0.948 0.926 0.921 0.935 0.935 0.959 0.968 1.127 1.199 1.028
                                                                                             10.277
51
       7
            1.450 1.570 1.098 0.980 0.922 0.898 0.822 0.828 0.909 0.924 0.983 1.185 1.047
                                                                                             21.990
53
       1
```

Some of the ATR's have data missing due to equipment malfunction. For the purpose of statistical analysis, if this table is used as is, all ATR's that have even one month of missing data would not be included in the statistical data set. Therefore, it was decided to estimate the missing counts for the ATR's that have up to three months of missing data. Sites for which more than three months of data are missing were not included in the analysis. Table 2.3 shows a list of missing data.

**TABLE 2.3 Missing Observations** 

| ATR# | COUNTY   | LOCATION                  | MONTH (S) MISSING    |
|------|----------|---------------------------|----------------------|
| 3    | Kanawha  | I-77, 2.1 MI N. OF CO 15  | April                |
| 4    | Wood     | I-77 NB, 1.0 M S OF WV 14 | August - December    |
| 6    | Harrison | I-79, 0.2 M S OF CO 73/73 | May - December       |
| 8    | Nicholas | US 19 .06 M OF CO 19/45   | March                |
| 9    | Wood     | US 50, 1.1 MI. E. OF I-77 | February             |
| 11   | Boone    | US 119, 0.8 MI. S OF WV 3 | February - May       |
| 12   | Harrison | WV 131, 1.2 M OF US 50    | March and December   |
| 14   | Lewis    | US 33, 0.4 MI. E OF CO 13 | January and December |
| 20   | Grant    | US 220 1.5 M S OF 220/4   | May- August          |
| 22   | Braxton  | US 19 1.5 M OF CO 19/36   | January - March      |
| 27   | Kanawha  | I-64, 2.0 MI W OF WV 622  | March and April      |
| 33   | Cabell   | WV 10, 0.3 MI. S. OF I-64 | April                |
| 42   | Kanawha  | I-64, E. OF KAN. CITY I/C | June                 |
| 50   | Berkeley | I-81, 1.6 MI. S. OF WV 45 | October - December   |

In order to estimate the missing observations, stations that were deemed to be similar to the one with missing data were used. Similarity was determined based on the following criteria:

- 1. Functional classification code,
- 2. Variability in monthly factors as measured by the MCV,
- 3. Pattern of change in monthly factors, and

## 4. Geographic location.

Based on the above criteria, missing observations were estimated for stations with less than four months of missing data. Results are shown in Table 2.4, next page.

The estimated values of the missing observations were inserted into Table 2.2. The result is shown in Table 2.5, below. The values of MFAC and MCV were not re-calculated after estimating the missing data. The contents of this table were then uploaded to the IBM mainframe computer of the West Virginia Network for Educational Telecomputing (WVNET) for the purpose of performing cluster analysis, which will be discussed in Chapter 3.

TABLE 2.4 Estimation of Missing Observations

| Station # | Month(s) Missing | Explanation                                                                                                                                                                             |
|-----------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3         | 4                | Used station #1. Average ratio for months 3 and 5 was used. $(0.99/0.952 = 1.04; 1.234/1.137 = 1.085);$<br>AVG. = $(1.04 + 1.085)/2 = 1.063$<br>Estimate for F4 = $1.063*0.983 = 1.045$ |
| 4         | 8-12             | Too many missing observations; deleted from the data set                                                                                                                                |
| 6         | 5-12             | Too many missing observations; deleted from the data set                                                                                                                                |
| 8         | 3                | Used ATR #10. Calculations similar to station #3                                                                                                                                        |
| 9         | 2                | Used ATR #10. Calculations similar to station #3                                                                                                                                        |
| 11        | 2-5              | Too many missing observations; deleted from the data set                                                                                                                                |
| 12        | 3 and 12         | Could not satisfy the similarity condition within identical FC's. Used average of months 2 and 4 for month 3; and average of months 1 and 11 for month 12.                              |
| 14        | 1 and 12         | Used F1 and F12 values from station # 13                                                                                                                                                |
| 20        | 5-8              | Too many missing observations; deleted from the data set                                                                                                                                |
| 22        | 1-3              | Used F1, F2, and F3 values from station #43                                                                                                                                             |
| 27        | 3 and 4          | Used F3 and F4 values from station #26                                                                                                                                                  |
| 33        | 4                | Used F4 value from station #35                                                                                                                                                          |
| 42        | 6                | Used $F6 = (F5 + F7)/2 = 0.899$                                                                                                                                                         |
| 50        | 10-12            | Used F10, F11, and F12 values from station # 2                                                                                                                                          |

TABLE 2.5 Monthly Factors With Estimated Missing Observations

| ATR | FC_ | _F1_F2     | F3      |         | F5      |       |        |        |        | F10   |       |        | MFAC     | MCY    |
|-----|-----|------------|---------|---------|---------|-------|--------|--------|--------|-------|-------|--------|----------|--------|
| 01  | 1   | 1.432 1.34 |         |         |         |       |        |        |        |       |       |        |          | 18.089 |
| 02  | 1   | 1.239 1.09 |         |         |         |       |        |        |        |       |       |        |          | 8.753  |
| 03  | 1   | 1.422 1.29 | 9 1.234 | 1.045   | 0.990   | 0.895 | 0.829  | 0.897  | 0.943  | 1.045 | 1.086 | 1.16   | 6 1.073  | 16.714 |
| 04  | 1   | DELETED    | )       |         |         |       |        |        |        |       |       |        |          |        |
| 05  | 1   | 1.475 1.33 | 3 1.015 | 0.893   | 0.955   | 0.915 | 0.849  | 0.846  | 0.919  | 0.917 | 1.066 | 1.24   | 7 1.036  | 19.049 |
| 06  | 1   | DELETE     | )       |         | ,       |       |        |        |        |       |       |        |          |        |
| 07  | 2   | 1.211 1.16 | 5 1.006 | 0.980   | 0.921   | 0.921 | 0.937  | 0.926  | 0.953  | 0.965 | 1.037 | 1.19   | 1 1.017  | 10.281 |
| 08  | 2   | 1.513 1.38 | 3 1.034 | 0.904   | 0.973   | 0.928 | 0.864  | 0.859  | 0.957  | 0.935 | 1.048 | 1.18   | 6 1.050  | 19.863 |
| 09  | 2   | 1.367 1.28 | 8 1.065 | 1.032   | 0.940   | 0.946 | 0.936  | 0.942  | 0.947  | 0.962 | 1.043 | 1.16   | 9 1.032  | 12.300 |
| 10  | 2   | 1.354 1.25 | 8 1.026 | 0.986   | 0.911   | 0.921 | 0.928  | 0.866  | 0.912  | 0.906 | 1.061 | 1.11   | 8 1.020  | 14.406 |
| 11  | 2   | DELETEI    | )       |         |         |       |        |        |        |       |       |        |          |        |
| 12  | 6   | 1.031 0.95 | 2 0.989 | 1.026   | 1.017   | 0.985 | 1.095  | 0.946  | 1.003  | 0.995 | 1.011 | 1.02   | 1 1.006  | 3.999  |
| 13  | 6   | 1.217 1.07 | 5 0.984 | 0.975   | 0.958   | 0.925 | 0.948  | 0.956  | 0.965  | 0.984 | 1.036 | 1.05   | 7 1.009  | 7.639  |
| 14  | 6   | 1.217 1.16 | 7 1.015 | 5 1.011 | 0.960   | 0.952 | 0.994  | 0.967  | 0.982  | 0.968 | 1.152 | 2 1.05 | 7 1.017  | 7.273  |
| 15  | 6   | 1.250 1.14 | 5 0.968 | 0.911   | 0.939   | 1.161 | 0.841  | 0.861  | 0.939  | 0.998 | 1.043 | 1.20   | 1.022    | 12.892 |
| 16  | 6   | 1.234 1.21 | 7 0.915 | 0.906   | 0.956   | 0.946 | 0.996  | 0.967  | 0.960  | 0.984 | 1.021 | 0.99   | 9 1.008  | 10.122 |
| 17  | 6   | 1.149 1.09 | 0 0.967 | 7 0.968 | 0.935   | 0.945 | 0.951  | 0.949  | 0.977  | 1.010 | 1.077 | 7 1.04 | 1 1.005  | 6.585  |
| 18  | 6   | 1.254 1.10 | 6 0.953 | 3 1.026 | 0.980   | 0.998 | 0.946  | 0.950  | 0.974  | 0.906 | 1.074 | 1.09   | 94 1.022 | 9.039  |
| 19  | 7   | 1.278 1.15 |         |         |         |       |        |        |        |       |       |        |          | 10.422 |
| 20  | 7   | DELETEI    |         |         |         |       |        |        |        |       |       |        |          |        |
| 21  | 7   | 1.651 1.53 |         | 2 0.993 | 0.892   | 0.869 | 0.746  | 0.813  | 0.872  | 0.864 | 1.241 | 1.47   | 73 1.083 | 27.594 |
| 22  | 7   | 1.168 1.0  | 4 0.984 | 1.162   | 2 1.049 | 0.956 | 0.947  | 0.929  | 0.973  | 0.911 | 1.038 | 3 1.08 | 37 1.006 | 7.844  |
| 23  | 7   | 1.092 1.08 |         |         |         |       |        |        |        |       |       |        |          | 8.126  |
| 24  | 7   | 1.266 1.17 |         |         |         |       |        |        |        |       |       |        |          | 11.398 |
| 25  | 7   | 1.214 1.12 |         |         |         |       |        |        |        |       |       |        |          | 9.477  |
| 26  | 11  | 1.183 1.1: |         |         |         |       |        |        |        |       |       |        |          | 11.571 |
| 27  | 11  | 1.184 1.29 |         |         |         |       |        |        |        |       |       |        |          | 12.092 |
| 30  | 11  | 1.435 1.4  |         |         |         |       |        |        |        |       |       |        |          | 19.481 |
|     | 12  | 1.311 1.10 |         |         |         |       |        |        |        |       |       |        |          | 14.744 |
| 31  | 14  | 1.511 1.10 | )       | 1 0.7/  | 0.007   | 0.730 | . 0.77 | . 0.75 | . 0.73 |       |       |        |          |        |

```
1.345 1.110 0.961 0.953 0.966 0.936 0.942 0.943 0.954 0.966 1.028 1.171 1.029
                                                                                            12.021
33
      14
            1.015 0.981 0.908 0.923 0.906 0.952 1.187 1.080 1.015 0.992 1.038 1.027 1.002
                                                                                             7.636
34
      14
            1.353 1.108 0.997 0.980 0.984 0.954 0.950 0.968 1.008 1.029 1.010 1.001 1.028
                                                                                            10.262
35
      14
                                                                                             8.641
            1.148 1.086 0.972 0.968 0.926 0.915 0.954 0.923 0.950 0.992 1.113 1.158 1.009
36
      14
            1.221 1.089 1.006 0.976 0.965 0.971 0.995 0.882 0.945 1.003 1.086 1.097 1.020
                                                                                             8.424
37
      16
            1.155 1.167 0.962 0.952 0.948 0.926 0.965 1.005 0.981 0.999 1.026 1.043 1.011
                                                                                             7.356
38
      17
            1.212 1.128 1.024 1.004 0.970 0.912 0.899 0.907 0.927 0.913 0.981 1.187 1.005
                                                                                             10.643
39
       1
            1.130 1.012 0.920 1.005 0.932 0.930 0.991 1.038 1.023 0.994 1.066 1.061 1.008
                                                                                             5.907
40
      16
            1.160 0.970 0.960 0.972 0.933 0.909 0.951 0.942 0.971 1.034 1.088 1.144 1.003
                                                                                             8.030
41
      16
                                                                                             13.745
            1.195 1.205 0.953 0.934 0.985 0.899 0.813 0.851 0.922 0.929 1.037 1.232 1.005
42
      11
            1.168 1.074 0.948 1.003 0.951 0.958 0.989 0.970 0.984 0.992 1.011 1.109 1.013
                                                                                             6.492
43
       7
                                                                                             9.062
            1.004 0.970 0.955 0.942 0.915 1.271 0.996 0.943 0.957 0.969 1.034 1.069 1.002
44
       6
            1.162 1.113 0.962 0.962 0.938 0.953 1.007 0.852 0.973 0.971 1.132 1.211 1.020
                                                                                             10.163
       7
45
            1.381 1.721 1.308 0.924 0.912 0.883 0.813 0.858 0.953 0.896 1.144 1.733 1.127
                                                                                             28.278
46
       7
            1.266 1.181 0.907 0.811 1.080 0.876 0.766 0.814 1.340 1.122 1.011 1.080 1.021
                                                                                             17.668
47
       1
            1.616 1.147 0.972 0.972 0.953 0.943 0.978 0.935 0.954 0.940 1.108 0.984 1.042
                                                                                             17.724
48
       6
            1.273 1.024 1.001 1.098 1.127 1.104 0.975 0.899 1.040 0.931 0.963 0.941 1.031
                                                                                             9.780
49
       6
            1.268 1.214 1.050 0.950 0.985 0.963 0.938 0.893 0.989 0.997 1.050 1.061 1.028
                                                                                             11.810
50
       1
            1.167 1.168 1.079 0.948 0.926 0.921 0.935 0.935 0.959 0.968 1.127 1.199 1.028
                                                                                             10.277
51
       7
            1.450 1.570 1.098 0.980 0.922 0.898 0.822 0.828 0.909 0.924 0.983 1.185 1.047
                                                                                             21.990
53
       1
```

## **CHAPTER THREE**

#### 3.1 INTRODUCTION

This chapter contains the work performed in the statistical analysis and formation of clusters based on 1995 traffic count data. The results of this analysis are used in the computation of seasonal factors. These steps can be followed when it is desired to define new clusters.

## 3.2 STATISTICAL ANALYSIS

As mentioned in Chapter 2, a high value of the monthly coefficient of variation (MCV) is an indication of high seasonality which is an attribute associated with "recreational" roads (Reference 1). MCV is calculated as the ratio of the standard deviation of the "monthly factors" to their mean (x100). The actual data, without the estimates of the missing observations, were used in these calculations. Data were then sorted based on the values of MCV to examine the patterns and decide on the recreational group. This sorted list is included in Appendix 1. Based on examination of this list, locations of ATR's number 21 and 46 were identified as recreational. Both locations are on rural major collectors and have a percent MCV greater than 25%.

## 3.3 CLUSTER ANALYSIS

In order to calculate "seasonal adjustment factors", it was necessary to group roads (or ATR's) with similar monthly factors together so that these factors can be calculated for the entire group. As prescribed in the Traffic Monitoring Guide (1), the monthly factors (ratios of AADT to MADT) were used to measure the similarity between ATR's and to group them into clusters. Since all the

variables used in the clustering process (monthly factors) are ratios close to the value of 1.0, there was no need to standardize the data (by subtracting from each variable its mean, and dividing the result by its standard deviation, so that each standardized variable would have a mean of zero and a standard deviation of 1, and all variables would have the same weight). Different clustering methods are available for the grouping process. As suggested in the Traffic Monitoring Guide (1), "Ward's Minimum Variance" method was used. In this method, the distance between two clusters is calculated as the sum of squares between the two clusters added up over all the variables. The method starts with all observations considered as individual clusters. At each iteration, the within-cluster sum of squares is minimized over all partitions obtainable by merging two clusters from the previous iteration. The merging process continues until all observations are merged into one cluster. Ward's method tends to join clusters that have a small number of observations and, hence, tends to produce clusters with roughly similar number of observations. More details about Ward's method may be found is SAS User's Guide (12) or in Ward's article (13).

A SAS program was developed to perform the cluster analysis and is listed in Appendix 2. The results obtained are given in Appendix 3. From these results, the ATR's may be tentatively grouped in 7 clusters as shown in Table 3.1. This table shows how groups were formed in the clustering analysis. Entries in the table show the number of the group formed, followed by the number of ATR's in the group. The group number corresponds to the order followed in the clustering program. For example, in the last step, group number 1 was formed with all 45 ATR's, and consists of groups number 2, and 3, and so on. The last entries in each column show the cluster number, and the numbers of the ATR's included in the cluster.

**TABLE 3.1** Tentative Scheme for ATR Clustering

|          | GP 1 (45) |      |             |                            |           |            |  |  |  |  |
|----------|-----------|------|-------------|----------------------------|-----------|------------|--|--|--|--|
| GP 2     | (11)      |      |             | GP 3 (34)                  |           |            |  |  |  |  |
| GP 8 (2) | GP 7 (9)  |      | GP 4 (31)   |                            |           |            |  |  |  |  |
| CL 1     | CL 2      | CL 3 |             | GP 5 (30)                  |           |            |  |  |  |  |
| 21, 46   | 1, 3, 5,  | 47   |             | GP 6 (28)                  | GP 34 (2) | 12, 34, 44 |  |  |  |  |
|          | 8, 9, 10, |      | GP 13 (7)   | GP 9 (21)                  | CL 6      |            |  |  |  |  |
|          | 30, 48,   |      | CL 4        | CL 5                       | 26, 27    |            |  |  |  |  |
|          | 53        |      | 7, 15, 24,  | 2, 13, 14, 16, 17, 18, 19, |           |            |  |  |  |  |
|          |           | :    | 31, 39, 42, | 22, 23, 25, 33, 35, 36,    |           |            |  |  |  |  |
|          |           |      | 51          | 37, 38, 40, 41, 43, 45     |           |            |  |  |  |  |

One major problem with the above clustering scheme is that in a number of cases roads that have the same functional classification code are grouped in different clusters. This would create a problem when the seasonal factors calculated for a cluster are applied to a new road. It is desirable to group all ATR's of roads of the same functional classification code together, so that the factors calculated for the cluster may be applied to any new road that matches any of the functional classification codes of the ATR's in the cluster. In this case, one may use his best judgement to move some of the ATR's shown in Table 3.1 around such that ATR's with the same functional classification number would belong to the same cluster. This approach was followed in the example given in the TMG (1). Following this approach, the ATR's were grouped in five clusters as shown in Table 3.2.

TABLE 3.2 Adjusted Tentative Scheme for ATR Clustering

| CLUSTER              |                               | STATION NUMBER                           | FUNCT. CLASS |
|----------------------|-------------------------------|------------------------------------------|--------------|
| 1. RURAL             |                               |                                          |              |
| Principal Arterial - | Interstate                    | 1, 2, 3, 5, 39, 47, 50, 53               | 1            |
| Principal Arterial - | Other                         | 7, 8, 9, 10                              | 2            |
|                      |                               |                                          |              |
| 2. RURAL             |                               |                                          |              |
| Minor Arterial       |                               | 12, 13, 14, 15, 16, 17, 18, 44<br>48, 49 | 6<br>6       |
| Major Collector      |                               | 19, 22, 23, 24, 25, 43, 45, 51           | 7            |
|                      |                               |                                          |              |
| 3. URBAN             |                               |                                          |              |
| Principal Arterial - | Interstate                    | 26, 27, 30, 42                           | 11           |
| Principal Arterial - | Other Freeways or Expressways | 31                                       | 12           |
| 4. URBAN             |                               |                                          |              |
|                      | Other                         | 33, 34, 35, 36                           | 14           |
| Principal Arterial - | Other                         | , , ,                                    |              |
| Minor Arterial       |                               | 37, 40, 41                               | 16           |
| Collector            |                               | 38                                       | 17           |
|                      |                               |                                          |              |
| 5. RECREATIONAL      | L                             | 21, 46                                   | 7            |

An alternative approach would be to use the functional classification codes as part of the clustering procedure. To follow this approach a new variable, "functional code value" was introduced to assign a value to each code as shown in Table 3.3.

TABLE 3.3 Values Assigned to Functional Classification Codes

| Code | Value | Functional Classification                      |
|------|-------|------------------------------------------------|
| 01   | 10    | Rural - Principal Arterial - Interstate        |
| 02   | 20    | Rural - Principal Arterial - Other             |
| 06   | 30    | Rural - Minor Arterial                         |
| 07   | 40    | Rural - Major Collector                        |
| 08   | 50    | Rural - Minor Collector                        |
| 09   | 60    | Rural - Local System                           |
| 11   | 110   | Urban - Principal Arterial - Interstate        |
| 12   | 120   | Urban - Principal Arterial - Other Freeways or |
|      |       | Expressways                                    |
| 14   | 130   | Urban - Principal Arterial - Other             |
| 16   | 140   | Urban - Minor Arterial - Other                 |
| 17   | 150   | Urban - Collector                              |
| 19   | 160   | Urban - Local System                           |
|      | 500   | Recreational                                   |

With the inclusion of the new variable, the functional classification code value will carry more weight in the clustering analysis than any of the monthly factors. In addition, ATR's for rural roads will tend to be clustered with those of other rural roads with similar or close functional code values. The same is true for ATR's of urban roads. Recreational roads are practically forced to be grouped together. As an example, rural-principal-arterial-interstate roads will have a better chance to be grouped with rural-principal-arterial-other roads than with rural-minor-collector roads or with any urban or recreational road.

A SAS program was developed to perform the new cluster analysis and is listed in Appendix 4. The results obtained are given in Appendix 5. From these results, the ATR's may be tentatively grouped in 5 clusters as shown in Table 3.4. Three of these clusters may be divided into smaller ones to form up to a total of eight clusters as shown in the table.

TABLE 3.4 Modified Tentative Scheme for ATR Clustering

| GP 1 (45)           |           |                 |             |             |         |         |        |  |  |
|---------------------|-----------|-----------------|-------------|-------------|---------|---------|--------|--|--|
| GP 2 (43)           |           |                 |             |             |         |         |        |  |  |
| GP 3 (30) GP 4 (13) |           |                 |             |             |         |         |        |  |  |
| GP 7 (              | (12)      | GP 6 (          | GP 16 (4)   | GP 5 (9)    |         |         |        |  |  |
| CL                  | CL 1 CL 2 |                 |             | CL 3        | CL 4    |         |        |  |  |
| CL 1A               | CL 1B     | CL 2A           | CL 2B       | CL 3        | CL 4A   | CL 4B   |        |  |  |
| 1, 2, 3, 5,         | 7, 8, 9,  | 12, 13, 14, 15, | 19, 22, 23, | 26, 27, 30, | 31, 33, | 37, 38, | 21, 46 |  |  |
| 39, 47,             | 10        | 16, 17, 18, 44, | 24, 25, 43, | 42          | 34, 35, | 40, 41  |        |  |  |
| 50, 53              |           | 48, 49          | 45, 51      |             | 36      |         |        |  |  |

Entries in this table may be interpreted similar to those of Table 3.1. A careful examination of the entries in this table shows that the problem encountered with the first clustering scheme does not exist here. In other words, ATR's of roads that have the same functional classification codes are grouped in the same cluster. The resulting modified clusters are presented in Table 3.5.

# **TABLE 3.5 Modified Clusters**

| GROUP                |                               | STATION NUMBER                           | FUNC. CLASS |
|----------------------|-------------------------------|------------------------------------------|-------------|
| 1- RURAL             |                               | •                                        |             |
| Principal Arterial - | Interstate                    | 1, 2, 3, 5, 39, 47, 50, 53               | 1           |
| Principal Arterial - | Other                         | 7, 8, 9, 10                              | 2           |
|                      |                               |                                          |             |
| 2- RURAL             |                               |                                          |             |
| Minor Arterial       |                               | 12, 13, 14, 15, 16, 17, 18, 44<br>48, 49 | 6           |
| Major Collector      |                               | 19, 22, 23, 24, 25, 43, 45, 51           | 7           |
|                      |                               |                                          |             |
| 3- URBAN             |                               |                                          |             |
| Principal Arterial - | Interstate                    | 26, 27, 30, 42                           | 11          |
| 4- URBAN             |                               |                                          |             |
| Principal Arterial - | Other Freeways or Expressways | 31                                       | 12          |
| Principal Arterial - | Other                         | 33, 34, 35, 36                           | 14          |
| Minor Arterial       |                               | 37, 40, 41                               | 16          |
| Collector            |                               | 38                                       | 17          |
|                      |                               |                                          |             |
| 5- RECREATIONAL      |                               | 21, 46                                   | 7           |

A comparison between Tables 3.2 and 3.5 shows that the results obtained in both cases are similar with the exception of ATR # 31 (Urban Principal Arterial - Other Freeways or Expressways) which moved from a cluster with "Urban Arterial - Interstate" to a cluster with the other urban roads. The results shown in Table 3.5 are the ones that were used in the calculation of the "Seasonal Adjustment Factors".

#### 3.4 CONSIDERATION OF TRAFFIC VOLUMES

An examination of traffic volumes (AADT) for the different classes of road (as defined by the functional classification codes) showed relatively uniform volumes for the roads within each of the classes, except for the "rural principal arterial interstate" roads where the volumes varied widely. Roads in this group were divided into two subgroups: Those with AADT less than 20,000 and those with AADT greater than 20,000. A cluster analysis was then performed while using the following variables to measure the similarity between ATR's: Monthly factors, Functional Classification Values, and AADT. The results obtained are given in Table 3.6. These results are essentially the same as those given in Table 3.5.

TABLE 3.6 Cluster Results Obtained with Traffic Volume Consideration

| GROUP                                      | STATION NUMBER                           | FUNC. CLASS |
|--------------------------------------------|------------------------------------------|-------------|
| RURAL                                      |                                          |             |
| Principal Arterial - Interstate (AADT>201  | (X) 2, 3, 39, 50                         | 1           |
| Principal Arterial - Interstate (AADT < 20 | 0K) 1, 5, 47, 53                         | 1           |
| Principal Arterial - Other                 | 7, 8, 9, 10                              | 2           |
| RURAL<br>Minor Arterial                    | 12, 13, 14, 15, 16<br>17, 18, 44, 48, 49 | 6<br>6      |
| Major Collector                            | 19, 22, 23, 24, 25<br>43, 45, 51         | 7<br>7      |
| URBAN                                      | 73, 73, 31                               | ,           |
| Principal Arterial - Interstate            | 26, 27, 30, 42                           | 11          |
| URBAN                                      |                                          |             |
| Principal Arterial - Other Freeways        | 31                                       | 12          |
| or Expressways                             |                                          |             |
| Principal Arterial - Other                 | 33, 34, 35, 36                           | 14          |
| Minor Arterial                             | 37, 40, 41                               | 16          |
| Collector                                  | 38                                       | 17          |
| RECREATIONAL                               | 21, 46                                   | 7           |

#### CHAPTER FOUR

### 4.1 INTRODUCTION

This chapter contains details of steps, as listed below, that can be followed on an annual basis to compute seasonal factors based on the current year data.

- 1. Data Importation: A CSV (Comma-Separated-Value) file containing traffic counts recorded at each of the permanent ATR's is imported from the WVDOH-MIS into an Excel worksheet.
- 2. Factor Calculation for Individual Sites: Using the traffic counts, monthly and day-of-week factors are computed for each site. A file that contains the data needed for the cluster analysis is generated.
- 3. Cluster Analysis: Cluster analysis is then performed after which each traffic counter is assigned a cluster number.
- 4. Factor Calculation for Clusters: All the daily and monthly factors are computed for each cluster using all the data available for the counters in that cluster.

If the number of ATR's and the nature of the data are changed significantly, it is recommended to perform a new cluster analysis. Otherwise, the cluster analysis step may be skipped.

Each of the above steps is described in sections 4.2 through 4.5. These steps are combined in an easy to follow procedure in section 4.6.

# 4.2 Data Importation

In order to facilitate the computation of seasonal factors in the future, a computer macro was

written to read the data from the Traffic Management Information System at WVDOH into an MS Excel worksheet. This macro, coded using Visual Basic in an Excel environment, will also be used later to compute the monthly and day-of-the-week factors for each ATR.

The data obtained from the traffic counters must be stored in an ASCII format in a '.CSV' (Comma Separated Value) file. This file contains the traffic count at each counter for each day of the year. Weekdays are coded as follows:

| Sunday    | - | 1 |
|-----------|---|---|
| Monday    | - | 2 |
| Tuesday   | - | 3 |
| Wednesday | - | 4 |
| Thursday  | - | 5 |
| Friday    | - | 6 |
| Saturday  | _ | 7 |

The first two rows of the file contain general information, as shown in Appendix 6. These two rows show the current year, and the total number of stations. Then, for each site, the file contains a block of 50 rows and 27 columns. The first row shows the station number and description of its functional classification. The second row is left blank. The third row shows the PATR number, its location, and spaces for manual entry of the cluster number and the functional classification code. The fourth row is left blank. Row five contains headings for data that will follow. The next 31 rows contain the data for each day of the month. Each data row contains the following columns:

Column Number

1

Description

Sequential day of the month (1 through 31)

Blank
 Weekday Code (1 through 7) corresponding to that day in January
 Traffic counts taken on that day in January
 The pattern for columns 3 and 4 is repeated for the next 11 months
 Blank

To run the macro, a file called 'factors.xls' is opened in MS Excel. The initial setup of the worksheet is done using the steps described below. Once the worksheet is setup for data import, the '.CSV' file is opened and its contents are read into the worksheet as described below. There are various short cut keys in the macro which perform certain tasks before reading in the data. Once the relevant data for all the counters are read in, the macro is ready to compute the monthly and the daily factors for each counter.

#### 4.3 Factor Calculation for Individual Sites

During the course of a month, there may be days when the counter does not record any data. The total annual traffic is the sum of entries for each month of that year. The *Annual Average Daily Traffic* (AADT) is the ratio of the total annual traffic to the total number of days in the year for which data are obtained. The *Monthly Average Daily Traffic* (MADT) is the ratio of the total monthly traffic to the number of non-zero entries for that month. The monthly factor for each month of the year is then computed as:

Monthly Factor = AADT / MADT

The factor for day of the week within a month is computed next. For example, the Sunday factor for the month of January would be:

#### **MADT**

(Total traffic on all Sundays of the month / Number of Sundays with data in January)

These calculations are done for all the counters for each day of the week for every month of the year.

At this stage, an additional Excel worksheet is generated which contains, for each ATR, its number, functional classification code, and the corresponding twelve monthly factors. The contents of this file must be written into an ASCII file that can be used by any statistical package capable of performing cluster analysis.

### 4.4 Cluster Analysis

As mentioned earlier, this step is performed only when new clusters need to be formed.

Details of this analysis are given in Chapter three.

#### 4.5 Factor Calculation for Clusters

After the completion of the cluster analysis, each site is assigned a particular cluster number which is entered at a specific cell in the spreadsheet. Certain sites may not be assigned to any cluster due to lack of sufficient data for clustering. These sites are grouped together in an additional cluster at the end. The macro calculates the day-of-the-week factor and the MADT for each cluster using the methods explained earlier. A listing of all portions of the Excel macro is shown in Appendix

7 and is included in a disk file attached to this report.

# 4.6 Step by Step Procedure to Read in Data and Compute Factors

As data become available on a yearly basis, the following steps must be taken to compute new seasonal factors. Please note that the CSV file must be generated by the WVDOH MIS . The format and specification of this file is programmed into the MIS to ensure compatibility.

# Step 1: Importing the CSV File into MS-Excel

Once MS Excel is opened, go to the 'File' menu and select 'Open' option. An 'Open' dialog box will show up on the screen. Locate the 'CSV' input file and select it. Then, click on the 'Open' button. The CSV file is now opened in MS Excel. The user will see the screen shown below.



### Step 2: Copying File to the Clipboard

Select the whole file by clicking on the sheet as shown below:



Then go to the 'Edit' menu and select 'Copy' option.

# Step 3: Close the CSV File

Go to the 'File' menu and select the 'Close' option. MS Excel will display the following message:



Select the 'Yes' option.

#### Step 4: Open FACTORS.XLS

Go to the File menu and select the 'Open' option. Locate and select 'factors.xls' and open it, similar to the way 'factors.csv' was opened.

# Step 5: Delete Present Contents of Raw Data in FACTORS.XLS

Hit 'Ctrl+l' to delete the contents of the worksheet.

#### Step 6: Generate New 'Raw Data'

Go to the 'Edit' menu and select the paste option. Now, the contents of 'factors.csv' should exist in the 'Raw-Data' worksheet. Go to the 'File' menu and select the 'Save' option.

### Step 7: Compute the Monthly and Daily Factors For Each Station

Select DOH Macro 3 from the tools menu or hit 'Ctrl+c'. This will compute the factors for all the traffic counters.

#### **Step 8: Cluster Analysis**

As mentioned earlier, the cluster analysis may be skipped. However, if a new cluster analysis is desired, the user must run DOH Macro 5 from the tools menu. This will generate a new worksheet entitled 'SAS\_UPLOAD'. Then, click on this new sheet to make it the "current"

worksheet. Next, go to 'File' menu and save this sheet as a .CSV file which can be used as the input to the SAS program. Once the cluster analysis is completed, the cluster numbers corresponding to each station must be manually entered into the 'Raw Data' worksheet.

The user must always examine Cell (K2) of the 'Raw Data' worksheet and make sure that it contains the correct number of clusters. The user will also need to make sure that the cluster number assigned to each site is entered accurately in the corresponding cell along column 'I'.

# Step 9: Compute the Monthly and Daily Factors For Each Cluster

Hit "Ctrl+c" on the keyboard or select Macro-4 from the tools menu. This will compute the factors for all clusters. The factors for all clusters are printed on the "Cluster-Sheet" and "Cluster-Sheet-2" worksheets. Save the workbook by going to 'File' menu and selecting the 'Save' option. Then, go to 'File' menu again and select 'Exit' option to quit.

Steps outlined in the above were followed for the 1995 data which were available at the time this report was written. Results are shown in Appendix 8.

#### CHAPTER FIVE

#### 5.1 CONCLUSIONS

West Virginia Division of Highways collects traffic counts at selected sites throughout the state. Some of these counts are continuously taken at permanent sites and some are from short duration counts. Clearly, it is extremely important for the WVDOH to organize the massive data collected into a usable format and have the capability to generate 'information' that can be used by planners and decision makers. The current project, along with another ongoing project on MIS development, will enable the WVDOH to do just that. This effort by the WVDOH enables them to not only meet the regulatory mandates, but be way ahead of the curve in the use of information in sound decision making.

In this research, data collected at permanent sites were statistically analyzed to reveal similarities in traffic patterns and to 'cluster' similar counters in smaller groups. These clusters can be further analyzed to point out more details and reveal the nature of their 'seasonality patterns.' The range of options available in terms of the variety and details of statistical analysis is vast. However, practicality and the potential for usefulness of information generated must always guide our efforts in data manipulation and analysis. Also, keep in mind that in spite of mathematical rigor associated with the statistical analysis performed, personal judgement in some instances must be used to make sure that results are reasonable and useful.

Results of the clustering used to compute the seasonal factors are shown in Appendix 8. This appendix must be consulted to convert the short term count taken at a certain location to the AADT for that location. Of course, one must first establish from the functional classification code, traffic

volume, and location which cluster fits this new location best. Then, the short count is multiplied by the appropriate monthly and day-of-the-week factors. Alternatively, the short count may be multiplied directly by the day-of-the-week factor for the corresponding month in that cluster.

In conclusion, it must be noted that the accuracy and precision of the conclusions made from any statistical analysis must be ascertained with future data collection and analysis. The counters clustered together based on 1995 data may not hold together in the future. It is recommended to perform the cluster analysis when the number of ATR's or the nature of the data are changed significantly to find out how clusters may have changed and what the final grouping of counters may look like. This recommendation becomes especially more important if several counters are taken out of service, or functional classification code at some sites are altered, or a number of new permanent counters are added to the system.

| ÷ |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

#### REFERENCES

- 1. "Traffic Monitoring Guide," U.S.DOT, Federal Highway Administration, publication number FHWA-PL-92-017, October 1992.
- 2. "Guide for Traffic Volume Counting Manual," U.S.DOT, Federal Highway Administration, March 1970.
- 3. Albright, David. "The Development of ASTM Highway Monitoring Standards." *ASTM Standardization News*, February 1991, pp. 22-26.
- 4. Albright, David. "An Imperative for, and Current Progress toward, National Traffic Monitoring Standards." *ITE Journal*, June 1991, pp. 22-26.
- 5. Albright, David. "Standards, Innovation, and the Future of Traffic Monitoring." *ITE Journal*, January 1993, pp. 31-36.
- 6. Albright, David. "Traffic Volume Summary Statistics." *Transportation Research Record* 1305, pp. 108-112.
- 7. Bodle, R. R. "Evaluation of Rural Coverage Count Duration For Estimating Annual Average Daily Traffic." *Highway Research Record* 199, pp. 67-77.
- 8. Drusch, Robert L. "Estimating Annual Average Daily Traffic from Short-Term Counts." Highway Research Record 118, pp. 85-95.
- 9. Hartgen, David T., and Lemmerman, John H. "Streamlining Collection and Processing of Traffic Count Statistics." *Transportation Research Record 928*, pp. 11-20.
- 10. Pennsylvania Department of Transportation, Bureau of Transportation Systems Performance.

  Traffic Data Collection and Factor Development Report 1994, Harrisburg, Pennsylvania,
  1994.
- 11. Ritchie, Stephen G. "A Statistical Approach to Statewide Traffic Counting." *Transportation Research Record 1090*, pp. 14-21.
- 12. "SAS User's Guide: Statistics," 5th Edition, SAS Institute, 1985, pp. 255-315.
- Ward, J.H. "Hierarchical Grouping to Optimize an Objective Function," Journal of the American Statistical Association, Vol. 58, pp. 236-244.

APPENDIX 1

ATR Data Sorted Based on MCV to Identify Recreational Sites

| ATR | FC | F1    | F2    | F3    | F4    | F5    | F6    | <b>F</b> 7 | F8    | <b>F9</b> | F10   | F11   | F12   | MFAC  | MCV   |
|-----|----|-------|-------|-------|-------|-------|-------|------------|-------|-----------|-------|-------|-------|-------|-------|
| 12  | 6  | 1.031 | 0.952 |       | 1.026 | 1.017 | 0.985 | 1.095      | 0.946 | 1.003     | 0.995 | 1.011 |       | 1.006 | 3.999 |
| 40  | 16 | 1.130 | 1.012 | 0.920 | 1.005 | 0.932 | 0.930 | 0.991      | 1.038 | 1.023     | 0.994 | 1.066 | 1.061 | 1.008 | 5.907 |
| 43  | 7  | 1.168 | 1.074 | 0.948 | 1.003 | 0.951 | 0.958 | 0.989      | 0.970 | 0.984     | 0.992 | 1.011 | 1.109 | 1.013 | 6.492 |
| 17  | 6  | 1.149 | 1.090 | 0.967 | 0.968 | 0.935 | 0.945 | 0.951      | 0.949 | 0.977     | 1.010 | 1.077 | 1.041 | 1.005 | 6.585 |
| 14  | 6  |       | 1.167 | 1.015 | 1.011 | 0.960 | 0.952 | 0.994      | 0.967 | 0.982     | 0.968 | 1.152 |       | 1.017 | 7.273 |
| 38  | 17 | 1.155 | 1.167 | 0.962 | 0.952 | 0.948 | 0.926 | 0.965      | 1.005 | 0.981     | 0.999 | 1.026 | 1.043 | 1.011 | 7.356 |
| 34  | 14 | 1.015 | 0.981 | 0.908 | 0.923 | 0.906 | 0.952 | 1.187      | 1.080 | 1.015     | 0.992 | 1.038 | 1.027 | 1.002 | 7.636 |
| 13  | 6  | 1.217 | 1.075 | 0.984 | 0.975 | 0.958 | 0.925 | 0.948      | 0.956 | 0.965     | 0.984 | 1.036 | 1.057 | 1.009 | 7.639 |
| 22  | 7  |       | •     |       | 1.162 | 1.049 | 0.956 | 0.947      | 0.929 | 0.973     | 0.911 | 1.038 | 1.087 | 1.006 | 7.844 |
| 41  | 16 | 1.160 | 0.970 | 0.960 | 0.972 | 0.933 | 0.909 | 0.951      | 0.942 | 0.971     | 1.034 | 1.088 | 1.144 | 1.003 | 8.030 |
| 23  | 7  | 1.092 | 1.080 | 0.931 | 0.976 | 0.950 | 0.968 | 1.006      | 0.930 | 0.947     | 0.944 | 1.183 | 1.119 | 1.011 | 8.126 |
| 37  | 16 | 1.221 | 1.089 | 1.006 | 0.976 | 0.965 | 0.971 | 0.995      | 0.882 | 0.945     | 1.003 | 1.086 | 1.097 | 1.020 | 8.424 |
| 36  | 14 | 1.148 | 1.086 | 0.972 | 0.968 | 0.926 | 0.915 | 0.954      | 0.923 | 0.950     | 0.992 | 1.113 | 1.158 | 1.009 | 8.641 |
| 2   | 1  | 1.239 | 1.092 | 0.992 | 0.969 | 0.965 | 0.922 | 0.921      | 0.907 | 0.999     | 0.997 | 1.050 | 1.061 | 1.009 | 8.753 |
| 18  | 6  | 1.254 | 1.106 | 0.953 | 1.026 | 0.980 | 0.998 | 0.946      | 0.950 | 0.974     | 0.906 | 1.074 | 1.094 | 1.022 | 9.039 |
| 44  | 6  | 1.004 | 0.970 | 0.955 | 0.942 | 0.915 | 1.271 | 0.996      | 0.943 | 0.957     | 0.969 | 1.034 | 1.069 | 1.002 | 9.062 |
| 25  | 7  | 1.214 | 1.123 | 0.915 | 0.954 | 0.964 | 0.930 | 0.945      | 0.939 | 0.950     | 0.951 | 1.033 | 1.142 | 1.005 | 9.477 |
| 11  | 2  | 1.270 |       | •     |       |       | 0.950 | 1.041      | 0.957 | 1.000     | 1.009 | 1.043 | 0.949 | 1.028 | 9.579 |
| 49  | 6  | 1.273 | 1.024 | 1.001 | 1.098 | 1.127 | 1.104 | 0.975      | 0.899 | 1.040     | 0.931 | 0.963 | 0.941 | 1.031 | 9.780 |
| 16  | 6  | 1.234 | 1.217 | 0.915 | 0.906 | 0.956 | 0.946 | 0.996      | 0.967 | 0.960     | 0.984 | 1.021 | 0.999 | 1.008 | 10.12 |
| 45  | 7  | 1.162 | 1.113 | 0.962 | 0.962 | 0.938 | 0.953 | 1.007      | 0.852 | 0.973     | 0.971 | 1.132 | 1.211 | 1.020 | 10.16 |
| 35  | 14 | 1.353 | 1.108 | 0.997 | 0.980 | 0.984 | 0.954 | 0.950      | 0.968 | 1.008     | 1.029 | 1.010 | 1.001 | 1.028 | 10.26 |
| 51  | 7  | 1.167 | 1.168 | 1.079 | 0.948 | 0.926 | 0.921 | 0.935      | 0.935 | 0.959     | 0.968 | 1.127 | 1.199 | 1.028 | 10.27 |
| 7   | 2  | 1.211 | 1.165 | 1.006 | 0.980 | 0.921 | 0.921 | 0.937      | 0.926 | 0.953     | 0.965 | 1.037 | 1.191 | 1.017 | 10.28 |
| 6   | 1  | 1.133 | 1.033 | 0.901 | 0.880 |       |       |            |       |           | •     | •     | •     | 0.099 | 10.41 |
| 19  | 7  | 1.278 | 1.159 | 0.988 | 0.940 | 0.923 | 0.941 | 0.942      | 0.972 | 0.968     | 0.957 | 0.960 | 1.101 | 1.010 | 10.42 |
| 39  | 1  | 1.212 | 1.128 | 1.024 | 1.004 | 0.970 | 0.912 | 0.899      | 0.907 | 0.927     | 0.913 | 0.981 | 1.187 | 1.005 | 10.64 |
| 24  | 7  | 1.266 | 1.175 | 1.012 | 0.976 | 0.903 | 0.916 | 0.928      | 0.924 | 0.941     | 0.965 | 1.113 | 1.150 | 1.022 | 11.39 |
| 26  | 11 | 1.183 | 1.158 | 1.241 | 1.133 | 0.991 | 0.926 | 0.897      | 0.872 | 0.939     | 0.943 | 1.006 | 1.102 | 1.032 | 11.57 |
| 50  | 1  | 1.268 | 1.214 | 1.050 | 0.950 | 0.985 | 0.963 | 0.938      | 0.893 | 0.989     | •     | •     | •     | 1.028 | 11.81 |
| 33  | 14 | 1.345 | 1.110 | 0.961 |       | 0.966 | 0.936 | 0.942      | 0.943 | 0.954     | 0.966 | 1.028 | 1.171 | 1.029 | 12.02 |
| 27  | 11 | 1.184 | 1.293 |       | •     | 0.962 | 0.916 | 0.920      | 0.905 | 0.965     | 0.962 | 1.049 | 1.115 | 1.027 | 12.09 |
| 20  | 7  | 1.210 | 1.130 | 0.841 | 0.893 | •     |       | •          | •     | 0.925     | 0.891 | 1.006 | 1.068 | 0.995 | 12.28 |
| 9   | 2  | 1.367 | •     | 1.065 | 1.032 | 0.940 | 0.946 | 0.936      | 0.942 | 0.947     | 0.962 | 1.043 | 1.169 |       | 12.30 |
| 15  | 6  | 1.250 | 1.145 | 0.968 | 0.911 | 0.939 | 1.161 | 0.841      | 0.861 | 0.939     | 0.998 | 1.043 | 1.204 | 1.022 | 12.89 |
| 42  | 11 | 1.195 | 1.205 | 0.953 | 0.934 | 0.985 | •     | 0.813      | 0.851 | 0.922     | 0.929 | 1.037 | 1.232 | 1.005 | 13.74 |
| 10  | 2  | 1.354 | 1.258 | 1.026 | 0.986 | 0.911 | 0.921 | 0.928      | 0.866 | 0.912     | 0.906 | 1.061 | 1.118 | 1.020 | 14.40 |
| 31  | 12 | 1.311 | 1.167 | 0.891 | 0.971 | 0.807 | 0.938 | 0.997      | 0.934 | 0.957     | 0.984 | 1.102 | 1.304 |       | 14.74 |
| 3   | 1  | 1.422 | 1.299 | 1.234 |       | 0.990 | 0.895 | 0.829      | 0.897 | 0.943     | 1.045 | 1.086 | 1.166 |       | 16.71 |
| 47  | 1  | 1.266 | 1.181 | 0.907 | 0.811 | 1.080 | 0.876 | 0.766      | 0.814 | 1.340     | 1.122 | 1.011 | 1.080 | 1.021 | 17.66 |

| 48 | 6  | 1.616 | 1.147 | 0.972 | 0.972 | 0.953 | 0.943 | 0.978 | 0.935 | 0.954 | 0.940 | 1.108 | 0.984 | 1.042 | 17.72 |
|----|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1  | 1  | 1.432 | 1.342 | 1.137 | 0.983 | 0.952 | 0.877 | 0.960 | 0.738 | 0.929 | 0.938 | 1.013 | 1.136 | 1.036 | 18.08 |
| 5  | 1  | 1.475 | 1.333 | 1.015 | 0.893 | 0.955 | 0.915 | 0.849 | 0.846 | 0.919 | 0.917 | 1.066 | 1.247 | 1.036 | 19.04 |
| 4  | 1  |       |       |       |       |       |       |       |       |       |       |       |       | 1.027 |       |
| 30 | 11 | 1.435 | 1.442 | 1.147 | 0.937 | 0.962 | 0.838 | 0.803 | 0.873 | 0.958 | 0.967 | 1.025 | 1.166 | 1.046 | 19.48 |
| 8  | 2  | 1.513 | 1.383 | •     | 0.904 | 0.973 | 0.928 | 0.864 | 0.859 | 0.957 | 0.935 | 1.048 | 1.186 | 1.050 | 19.86 |
| 53 | 1  | 1.450 | 1.570 | 1.098 | 0.980 | 0.922 | 0.898 | 0.822 | 0.828 | 0.909 | 0.924 | 0.983 | 1.185 | 1.047 | 21.99 |
| 21 | 7  | 1.651 | 1.533 | 1.052 | 0.993 | 0.892 | 0.869 | 0.746 | 0.813 | 0.872 | 0.864 | 1.241 | 1.473 | 1.083 | 27.59 |
| 46 | 7  | 1.381 | 1.721 | 1.308 | 0.924 | 0.912 | 0.883 | 0.813 | 0.858 | 0.953 | 0.896 | 1.144 | 1.733 | 1.127 | 28.27 |

#### **APPENDIX 2**

# SAS Program for the First Cluster

CMS FILEDEF SEASON DISK LEGG DAT A;
OPTIONS LINESIZE = 80;
OPTIONS PAGESIZE=65;
DATA WVDOH;
INFILE SEASON;
INPUT ATRNO FC F1-F12;
IF ATRNO = 4 THEN DELETE;
IF ATRNO = 6 THEN DELETE;
IF ATRNO = 11 THEN DELETE;
IF ATRNO = 20 THEN DELETE;
RUN;
PROC CLUSTER METHOD = WARD;
VAR F1-F12;
ID ATRNO;
RUN;

APPENDIX 3

# Results of the First Cluster Analysis

# Ward's Minimum Variance Cluster Analysis

# Eigenvalues of the Covariance Matrix

|    | Eigenvalue | Difference | Proportion | Cumulative |
|----|------------|------------|------------|------------|
| 1  | 0.058569   | 0.045878   | 0.566964   | 0.56696    |
| 2  | 0.012691   | 0.003905   | 0.122848   | 0.68981    |
| 3  | 0.008786   | 0.001856   | 0.085048   | 0.77486    |
| 4  | 0.006930   | 0.002294   | 0.067086   | 0.84195    |
| 5  | 0.004636   | 0.001209   | 0.044878   | 0.88682    |
| 6  | 0.003427   | 0.001115   | 0.033179   | 0.92000    |
| 7  | 0.002313   | 0.000520   | 0.022389   | 0.94239    |
| 8  | 0.001793   | 0.000133   | 0.017358   | 0.95975    |
| 9  | 0.001660   | 0.000205   | 0.016072   | 0.97582    |
| 10 | 0.001455   | 0.000747   | 0.014089   | 0.98991    |
| 11 | 0.000709   | 0.000375   | 0.006860   | 0.99677    |
| 12 | 0.000334   | •          | 0.003231   | 1.00000    |

Root-Mean-Square Total-Sample Standard Deviation = 0.092782 Root-Mean-Square Distance Between Observations = 0.454538

# Ward's Minimum Variance Cluster Analysis

| Number   |          |        | Frequency |             |           |     |
|----------|----------|--------|-----------|-------------|-----------|-----|
| of       |          |        | of New    | Semipartial |           |     |
| Clusters | Clusters | Joined | Cluster   | R-Squared   | R-Squared | Tie |
| 44       | 2        | 13     | 2         | 0.000616    | 0.999384  |     |
| 43       | 5        | 8      | 2         | 0.001224    | 0.998160  |     |
| 42       | 7        | 24     | 2         | 0.001233    | 0.996927  |     |
| 41       | 17       | 38     | 2         | 0.001414    | 0.995513  |     |
| 40       | 36       | 45     | 2         | 0.001610    | 0.993903  |     |
| 39       | 25       | 43     | 2         | 0.001789    | 0.992114  |     |
| 38       | CL44     | 37     | 3         | 0.001997    | 0.990116  |     |
| 37       | 9        | 10     | 2         | 0.002123    | 0.987994  |     |
| 36       | CL42     | 51     | 3         | 0.002185    | 0.985809  |     |
| 35       | 19       | 33     | 2         | 0.002234    | 0.983576  |     |
| 34       | 26       | 27     | 2         | 0.002622    | 0.980953  |     |
| 33       | 18       | CL39   | 3         | 0.002737    | 0.978216  |     |
|          |          |        |           |             |           |     |

| 32 | 23   | CL40 | 3  | 0.002826 | 0.975390 |
|----|------|------|----|----------|----------|
| 31 | 40   | 41   | 2  | 0.003112 | 0.972278 |
| 30 | 14   | 50   | 2  | 0.003347 | 0.968931 |
| 29 | CL38 | CL33 | 6  | 0.003351 | 0.965580 |
| 28 | 39   | 42   | 2  | 0.003578 | 0.962002 |
| 27 | 16   | CL41 | 3  | 0.003718 | 0.958284 |
| 26 | 30   | 53   | 2  | 0.003830 | 0.954454 |
| 25 | CL35 | 35   | 3  | 0.004587 | 0.949867 |
| 24 | CL30 | CL27 | 5  | 0.005692 | 0.944175 |
| 23 | 12   | 34   | 2  | 0.006492 | 0.937683 |
| 22 | CL36 | CL28 | 5  | 0.006575 | 0.931108 |
| 21 | CL29 | CL24 | 11 | 0.006867 | 0.924241 |
| 20 | 1    | CL37 | 3  | 0.007737 | 0.916504 |
| 19 | CL32 | CL31 | 5  | 0.008330 | 0.908175 |
| 18 | 22   | 49   | 2  | 0.009013 | 0.899162 |
| 17 | CL21 | CL25 | 14 | 0.009020 | 0.890142 |
| 16 | CL20 | 3    | 4  | 0.010210 | 0.879932 |
| 15 | CL43 | CL26 | 4  | 0.010546 | 0.869386 |
| 14 | CL22 | 31   | 6  | 0.012768 | 0.856618 |
| 13 | CL14 | 15   | 7  | 0.014295 | 0.842323 |
| 12 | CL23 | 44   | 3  | 0.018552 | 0.823771 |
| 11 | CL16 | CL15 | 8  | 0.018725 | 0.805046 |
| 10 | CL17 | CL19 | 19 | 0.021883 | 0.783163 |
| 9  | CL10 | CL18 | 21 | 0.027888 | 0.755275 |
| 8  | 21   | 46   | 2  | 0.029728 | 0.725547 |
| 7  | CL11 | 48   | 9  | 0.030397 | 0.695150 |
| 6  | CL9  | CL13 | 28 | 0.033885 | 0.661265 |
| 5  | CL6  | CL34 | 30 | 0.046867 | 0.614399 |
| 4  | CL5  | 47   | 31 | 0.058976 | 0.555423 |
| 3  | CL4  | CL12 | 34 | 0.069382 | 0.486041 |
| 2  | CL7  | CL8  | 11 | 0.123254 | 0.362787 |
| 1  | CL2  | CL3  | 45 | 0.362787 | 0.000000 |
|    |      |      |    |          |          |

#### APPENDIX 4

# SAS Program to Perform the Second Cluster Analysis

```
CMS FILEDEF SEASON DISK LEGG DAT A;
OPTIONS LINESIZE = 80;
OPTIONS PAGESIZE=65;
DATA WVDOH;
INFILE SEASON;
INPUT ATRNO FC F1-F12;
IF ATRNO = 4 THEN DELETE;
IF ATRNO = 6 THEN DELETE;
IF ATRNO = 11 THEN DELETE;
IF ATRNO = 20 THEN DELETE;
RUN;
IF FC = 1 THEN FC1 = 10;
IF FC = 2 THEN FC1 = 20;
IF FC = 3 THEN FC1 = 30;
IF FC = 4 THEN FC1 = 40;
IF FC = 5 THEN FC1 = 50;
IF FC = 6 THEN FC1 = 60;
IF FC = 7 THEN FC1 = 70;
IF FC = 8 THEN FC1 = 80;
IF FC = 9 THEN FC1 = 90;
IF FC = 11 THEN FC1 = 110;
IF FC = 12 THEN FC1 = 120;
IF FC = 14 THEN FC1 = 130;
IF FC = 16 THEN FC1 = 140;
IF FC = 17 THEN FC1 = 150;
IF FC = 19 THEN FC1 = 160;
IF ATRNO = 21 OR ATRNO = 46 THEN FC1 = 500;
RUN;
PROC SORT;
BY FC;
RUN;
PROC CLUSTER METHOD = WARD;
VAR F1-F12 FC1;
ID ATRNO;
RUN;
```

|  |  | · |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |

APPENDIX 5

# Results of the Second Cluster Analysis

# Ward's Minimum Variance Cluster Analysis

Eigenvalues of the Covariance Matrix

| Eigenvalue |         | Difference | Proportion | Cumulative |
|------------|---------|------------|------------|------------|
| 1          | 10783.1 | 10783.1    | 0.999992   | 0.99999    |
| 2          | 0.0     | 0.0        | 0.000004   | 1.00000    |
| 3          | 0.0     | 0.0        | 0.000001   | 1.00000    |
| 4          | 0.0     | 0.0        | 0.000001   | 1.00000    |
| 5          | 0.0     | 0.0        | 0.000001   | 1.00000    |
| 6          | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 7          | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 8          | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 9          | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 10         | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 11         | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 12         | 0.0     | 0.0        | 0.000000   | 1.00000    |
| 13         | 0.0     | •          | 0.000000   | 1.00000    |

Root-Mean-Square Total-Sample Standard Deviation = 28.80069 Root-Mean-Square Distance Between Observations = 146.8553

# Ward's Minimum Variance Cluster Analysis

| Number of |          |          | Frequency of | Semipartial | R-Squared | Tie      |   |
|-----------|----------|----------|--------------|-------------|-----------|----------|---|
|           | Clusters | Clusters | Joined       | New Cluster | R-Squared |          |   |
|           | 44       | 13       | 17           | 2           | 0.000000  | 1.000000 |   |
|           | 43       | 25       | 43           | 2           | 0.000000  | 1.000000 |   |
|           | 42       | 24       | 51           | 2           | 0.000000  | 1.000000 | T |
|           | 41       | 9        | 10           | 2           | 0.000000  | 1.000000 |   |
|           | 40       | 2        | 50           | 2           | 0.000000  | 1.000000 |   |
|           | 39       | 26       | 27           | 2           | 0.000000  | 1.000000 |   |
|           | 38       | 14       | 18           | 2           | 0.000000  | 1.000000 | T |
|           | 37       | 23       | 45           | 2           | 0.000000  | 1.000000 |   |
|           | 36       | 40       | 41           | 2           | 0.000000  | 1.000000 |   |
|           |          |          |              |             |           |          |   |

| 35 | 19   | CL43 | 3  | 0.000000 | 1.000000 |   |
|----|------|------|----|----------|----------|---|
| 34 | CL44 | CL38 | 4  | 0.000000 | 1.000000 |   |
| 33 | 33   | 35   | 2  | 0.000000 | 1.000000 |   |
| 32 | CL40 | 39   | 3  | 0.000000 | 1.000000 | T |
| 31 | 37   | CL36 | 3  | 0.000000 | 1.000000 |   |
| 30 | 7    | CL41 | 3  | 0.000000 | 1.000000 | T |
| 29 | CL34 | 16   | 5  | 0.000000 | 0.999999 |   |
| 28 | 1    | 5    | 2  | 0.000000 | 0.999999 |   |
| 27 | CL37 | CL42 | 4  | 0.000000 | 0.999999 |   |
| 26 | CL33 | 36   | 3  | 0.000000 | 0.999999 |   |
| 25 | CL35 | 22   | 4  | 0.000000 | 0.999999 | T |
| 24 | CL28 | 53   | 3  | 0.000000 | 0.999999 |   |
| 23 | 12   | 44   | 2  | 0.000000 | 0.999999 | T |
| 22 | CL24 | 3    | 4  | 0.000000 | 0.999999 |   |
| 21 | CL25 | CL27 | 8  | 0.000000 | 0.999999 | T |
| 20 | CL30 | 8    | 4  | 0.000000 | 0.999999 |   |
| 19 | 30   | 42   | 2  | 0.000000 | 0.999998 |   |
| 18 | CL29 | 15   | 6  | 0.000000 | 0.999998 |   |
| 17 | CL23 | 49   | 3  | 0.000000 | 0.999998 |   |
| 16 | CL39 | CL19 | 4  | 0.000000 | 0.999998 |   |
| 15 | CL26 | 34   | 4  | 0.000000 | 0.999997 | T |
| 14 | 21   | 46   | 2  | 0.000000 | 0.999997 |   |
| 13 | CL18 | 48   | 7  | 0.000000 | 0.999997 |   |
| 12 | CL32 | 47   | 4  | 0.000000 | 0.999996 |   |
| 11 | CL17 | CL13 | 10 | 0.000000 | 0.999996 |   |
| 10 | CL22 | CL12 | 8  | 0.000001 | 0.999995 |   |
| 9  | CL31 | 38   | 4  | 0.000158 | 0.999837 |   |
| 8  | 31   | CL15 | 5  | 0.000169 | 0.999669 |   |
| 7  | CL10 | CL20 | 12 | 0.000562 | 0.999106 |   |
| 6  | CL11 | CL21 | 18 | 0.000937 | 0.998170 |   |
| 5  | CL8  | CL9  | 9  | 0.000985 | 0.997185 |   |
| 4  | CL16 | CL5  | 13 | 0.003488 | 0.993696 |   |
| 3  | CL7  | CL6  | 30 | 0.006764 | 0.986932 |   |
| 2  | CL3  | CL4  | 43 | 0.194704 | 0.792228 |   |
| 1  | CL2  | CL14 | 45 | 0.792228 | 0.000000 |   |
|    |      |      |    |          |          |   |

#### APPENDIX 6

#### A Sample of the Input CSV File

ANNUAL PATR SUMMARY TABLE FOR,,,,1995,,,Total number of stations,,,49 "(1=Sunday, 2=Monday, 3=Tuesday, 4=Wednesday, 5=Thursday, 6=Friday, 7=Saturday)",,,,,,Total number of clusters "STATION 1: 'RURAL - 1, PRINCIPAL ARTERIAL - INTERSTATE"

PATR #1,,,"I-64, SUMMERS COUNTY",,,,Cluster:,,,Functional Code: ,,1

DATE,,DAY,JAN,DAY,FEB,DAY,MAR,DAY,APR,DAY,MAY,DAY,JUN,DAY,JUL,DAY,A UG,DAY,SEP,DAY,OCT,DAY,NOV,DAY,DEC 1, 1, 7507, 4, 6815, 4, 7174, 7, 8464, 2, 8068, 5, 9658, 7, 15589, 3, 10073, 6, 15086, 1, 10298, 4, 8050, 6, 8701, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 10073, 3, 7582, 6, 7847, 6, 2, 7890, 4, 8320, 7, 9811, 2, 10153, 5, 11740, 1, 9466, 3, 8536, 6, 10321, 1, 7263, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321, 1, 10321,4,,4,7002,7,2921,7,,3,7661,5,9425,1,10124,3,10139,6,14280,2,13682,4,9002,7,8077,2,72445, 5, 7600, 1, 4624, 1, 4, 8008, 6, 11001, 2, 9253, 4, 11021, 7, 12779, 3, 9635, 5, 9357, 1, 8732, 3, 7215, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12779, 12776,, 6, 5885, 2, 5164, 2,, 5, 8835, 7, 8374, 3, 8802, 5, 10518, 1, 13573, 4, 7979, 6, 12447, 2, 7950, 4, 75037,,7,4382,3,5963,3,7903,6,10349,1,9896,4,8770,6,12166,2,10838,5,9435,7,9502,3,7663,5,66709, 2, 6175, 5, 6702, 5, 6933, 1, 9224, 3, 8009, 6, 12334, 1, 12383, 4, 10466, 7, 9050, 2, 9961, 5, 8896, 7, 4605, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 100011, 4, 7, 6111, 7, 7916, 3, 5, 9680, 1, 10882, 3, 7232, 6, 16876, 2, 8660, 4, 9026, 7, 6804, 2, 675912,,5,,1,6537,1,8451,4,,6,11708,2,9509,4,7490,7,17224,3,8477,5,10333,1,8169,3,729413,,6,,2,6683,2,7575,5,11038,7,9292,3,9212,5,8269,1,18156,4,8772,6,12861,2,6999,4,7161 17, 3, 7045, 6, 9498, 6, 10175, 2, 11186, 4, 8626, 7, 12037, 2, 6976, 5, 14036, 1, 9819, 3, 9437, 6, 10632, 1, 7995, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 12037, 1218,,4,6692,7,7367,7,8121,3,9373,5,9199,1,12069,3,6752,6,16385,2,8950,4,9164,7,9616,2,793019, 5, 6915, 1, 7270, 1, 9511, 4, 8995, 6, 10898, 2, 9915, 4, 6842, 7, 14832, 3, 8659, 5, 10228, 1, 8715, 3, 8505, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 10021, 7, 4302, 3, 6736, 3, 7676, 6, 11198, 1, 9921, 4, 9863, 6, 10670, 2, 10449, 5, 9626, 7, 9339, 3, 10174, 5, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 10412, 1022, 1, 5292, 4, 6984, 4, 7668, 7, 8928, 2, 8908, 5, 10498, 7, 9365, 3, 9742, 6, 11489, 1, 10737, 4, 17007, 6, 12841, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 10737, 1023,,2,6360,5,7689,5,8236,1,10446,3,8474,6,12651,1,10191,4,,7,8889,2,8800,5,8955,7,11604 24,3,5753,6,8402,6,9803,2,8304,4,8736,7,11226,2,8307,5,10368,1,9932,3,8890,6,8919,1,5899 25,,4,6388,7,6810,7,8410,3,8044,5,10423,1,11963,3,6776,6,12022,2,8838,4,8747,7,11858,2,5819 26, 5, 7297, 1, 7888, 1, 8907, 4, 8130, 6, 14900, 2, 9388, 4, 6966, 7, 10451, 3, 8636, 5, 9657, 1, 17569, 3,28, 7, 3821, 3, 7477, 3, 7896, 6, 10278, 1, 9248, 4, 9127, 6, 10904, 2, 9161, 5, 9277, 7, 8436, 3, 7905, 5, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 92777, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 92777, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9277, 9229,,1,4616,,,4,8104,7,8072,2,13194,5,10611,7,11549,3,8700,6,11857,1,9175,4,7231,6,9207 30, 2, 4973, 5, 8460, 1, 8799, 3, 9924, 6, 15446, 1, 12797, 4, 9090, 7, 9079, 2, 8330, 5, 7547, 7, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177, 10177,

# 31, 3, 6623, 6, 5411, 4, 8861, 2, 10525, 5, 3, 7425, 1, 7157

,TOTAL

,MADT

,Monthly Factor

,Sunday Factor per Month

,Monday Factor per Month

,Tuesday Factor per Month

,Wednesday Factor per Month

,Thursday Factor per Month

,Friday Factor per Month

,Saturday Factor per Months

#### APPENDIX 7

Listing of Excel Macro to Input Traffic Counts and Compute Factors

#### Cluster-Crunch Module

```
' crunchcat Macro
Sub crunchcat()
     Dim catval(12, 7, 2)
    Dim mtotal(12, 2)
     Sheets("Raw-data").Select
     no of stat = Cells(1, 11). Value
     no_of_cat = Cells(2, 11).Value
     For c = 1 To no_of_cat
     Sheets("Raw-data").Select
     For i = 1 To 12
          mtotal(i, 1) = 0
          mtotal(i, 2) = 0
          For j = 1 To 7
            For k = 1 To 2
               catval(i, j, k) = 0
            Next k
          Next j
       Next i
       gtotal = 0
       gentries = 0
       For i = 1 To no_of_stat
       If Cells(5 + (i - 1) * 50, 9). Value = c Then
          gtotal = gtotal + Cells(50 * (i - 1) + 40, 27).Value
          gentries = gentries + Cells(50 * (i - 1) + 40, 28). Value
```

```
For i = 1 To 12
                mtotal(j, 1) = mtotal(j, 1) + Cells(50 * (i - 1) + 40, 4 + 2 * (j - 1)).Value
                mtotal(j, 2) = mtotal(j, 2) + Cells(50 * (i - 1) + 41, 3 + 2 * (j - 1)).Value
                For k = 1 To 7
                If (\text{Cells}((42 + k) + (i - 1) * 50, 4 + 2 * (j - 1)).\text{Value} \Leftrightarrow 0) Then
                 catval(j, k, 1) = catval(j, k, 1) + (Cells(50 * (i - 1) + 41, 27).Value / (Cells((42 + k) + 41, 27)).Value / (Cells((42
                                                               (I-1) * 50, 4+2*(j-1)).Value) * (Cells(42+k+(i-1)*50, 3)
                                                               + 2 * (i - 1)). Value)
                catval(j, k, 2) = catval(j, k, 2) + Cells((42 + k) + (i - 1) * 50, 3 + 2 * (j - 1)).Value
                End If
                Next k
          Next j
   End If
   Next i
' first, select the sheet to store the Day of week within month and monthly factors of each
   cluster....
Sheets("Cluster-sheet").Select
    Application.Run Macro:="factors.xls!get_to_top"
   ActiveCell.Offset(1 + (c - 1) * 20, 0).Range("A1").Select
   Application.Run Macro:="factors.xls!build_table"
   a$ = "Data for Cluster number : " + Str$(c)
   Cells(1 + (c - 1) * 20, 1) = a$
   If gentries > 0 Then
    gmean = gtotal / gentries
    Cells(20 * (c - 1) + 5, 27).Value = gtotal
    Cells(20 * (c - 1) + 6, 27). Value = gmean
    Cells(20 * (c - 1) + 5, 28). Value = gentries
    For i = 1 To 12
           Cells(20 * (c - 1) + 5, 3 + 2 * (i - 1)).Value = mtotal(i, 2)
           Cells(20 * (c - 1) + 5, 4 + 2 * (i - 1)). Value = mtotal(i, 1)
```

```
If mtotal(i, 2) > 0 And mtotal(i, 1) > 0 Then
         Cells(20 * (c - 1) + 6, 4 + 2 * (i - 1)).Value = mtotal(i, 1) / mtotal(i, 2)
         Cells(20 * (c - 1) + 7, 4 + 2 * (i - 1)).Value = gmean / (mtotal(i, 1) / mtotal(i, 2))
          End If
          For i = 1 To 7
          If catval(i, j, 2) \Leftrightarrow 0 Then
         Cells(20*(c-1)+7+j, 4+2*(i-1)). Value = gmean / (catval(i, j, 1) / catval(i, j, 2))
          Cells(20 * (c - 1) + 7 + j, 3 + 2 * (i - 1)). Value = catval(i, j, 2)
          End If
          Next i
       Next i
       End If
' Now select the sheet to store the day of week factor....
       Sheets("Cluster-sheet-2").Select
       Application.Run Macro:="factors.xls!get_to_top"
       ActiveCell.Offset(2 + (c - 1) * 2, 0).Range("A1").Select
       Application.Run Macro:="factors.xls!build_table_2"
       If (gentries = 0) Then gmean = 0 Else gmean = gtotal / gentries
       Cells(3 + (c - 1) * 2, 1).Value = c
       For i = 1 To 7
          day num = 0
          day_den = 0
            For i = 1 To 12
               day num = day num + catval(j, i, 1)
               day den = day den + catval(j, i, 2)
            Next i
          If (day den > 0 And day num > 0) Then
          Cells(3 + (c - 1) * 2, 1 + i).Value = gmean / (day_num / day_den)
          End If
       Next i
       Next c
       Sheets("Raw-data").Select
       Application.Run Macro:="factors.xls!get_to_top"
       Sheets("Cluster-sheet").Select
       Application.Run Macro:="factors.xls!get_to_top"
       Sheets("Cluster-sheet-2").Select
```

### Application.Run Macro:="factors.xls!get\_to\_top"

#### End Sub

# ' Build\_table Macro

Sub Build table() ActiveCell.Offset(2, 2).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Jan" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Feb" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Mar" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Apr" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "May" ActiveCell.Offset(-1, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Select Selection.ClearContents ActiveCell.Offset(1, 0).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "June" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "July" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Day" ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Aug"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Day"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Sep"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Day"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Oct"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Day"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Nov"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Day"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "Dec"

ActiveCell.Offset(1, -24).Range("A1").Select

ActiveCell.FormulaR1C1 = "Total"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "MADT"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Monthly Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Sunday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Monday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Tuesday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Wednesday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Tuesday Factor"

ActiveCell.Select

ActiveCell.FormulaR1C1 = "Thursday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Friday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "Saturday Factor"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.Columns("A:A").EntireColumn.ColumnWidth = 15.7

ActiveCell.Offset(-12, -1).Range("A1").Select

ActiveWindow.SmallScroll ToRight:=18

```
ActiveCell.Offset(3, 27).Range("A1").Select
  ActiveCell.FormulaR1C1 = "AADT"
  ActiveCell.Offset(1, 0).Range("A1").Select
  ActiveCell.FormulaR1C1 = "MCV"
  ActiveCell.Offset(-3, 0).Range("A1").Select
  ActiveWindow.SmallScroll ToRight:=-18
  ActiveWindow.SmallScroll Down:=2
  ActiveCell.Offset(18, -27).Range("A1").Select
  ActiveWindow.SmallScroll Down:=6
End Sub
'Get_to_top Macro
Sub Get to top()
  Range("A1").Select
  Row = ActiveCell.Row
  col = ActiveCell.Column
  ActiveCell.Offset(-Row + 1, -col + 1).Range("A1").Select
End Sub
Module 1
'inskar Macro
' Keyboard Shortcut: Ctrl+i
Sub inskar()
  ActiveCell.Rows("1:1").EntireRow.Select
  Selection.Insert Shift:=xlDown
  Selection.Insert Shift:=xlDown
  Selection.Insert Shift:=xlDown
  Selection.Insert Shift:=xlDown
  ActiveWindow.SmallScroll Down:=11
  ActiveCell.Offset(5, 7).Range("A1").Select
End Sub
' Macro2 Macro
' Keyboard Shortcut: Ctrl+r
Sub Macro2()
  ActiveCell.Offset(-1, -7).Range("A1").Select
```

End Sub

### ' Macro3 Macro

# ' Keyboard Shortcut: Ctrl+u

### Sub Macro3()

Application.Run Macro:="factors.xls!inskar" Application.Run Macro:="factors.xls!Macro2" End Sub

#### ' Macro4 Macro

### Sub Macro4()

Application.Run Macro:="factors.xls!inskar" ActiveCell.FormulaR1C1 = "Category:" ActiveCell.Offset(0, 1).Range("A1").Select End Sub

### ' test1 Macro

<sup>&#</sup>x27; Keyboard Shortcut: Ctrl+x

```
Sub test1()
  Dim mtotal(12, 2)
  Dim monval(12, 7, 2)
' the first column represents the month.....
' the second column stores the day of the week
' the third column stores the sum of values for a given day in each month in col#1 and # of non-blank
entries in col#2
  For i = 1 To 12
     mtotal(i, 1) = 0
    mtotal(i, 2) = 0
    For i = 1 To 7
       For k = 1 To 2
          monval(i, j, k) = 0
       Next k
     Next j
  Next i
  gtotal = 0
  gentries = 0
  Row = ActiveCell.Row
  col = ActiveCell.Column
  Row = Row + 3
  col = col + 3
  For i = 0 To 30
                          'represents the date...
     For j = 0 To 22 Step 2 'represents the month...
       a$ = Cells(Row + i, col + j - 1)
       If a$ = "" Then
          GoTo 10
       End If
        b$ = Cells(Row + i, col + j)
       If Val(b\$) \Leftrightarrow 0 Then
          m = 1 + i / 2
          d = Val(a\$)
          monval(m, d, 2) = monval(m, d, 2) + 1
          monval(m, d, 1) = monval(m, d, 1) + Cells(Row + i, col + j).Value
        End If
```

Next j

10

Next i

```
'now the data has to be processed...
For i = 1 To 12
   For i = 1 To 7
     mtotal(i, 1) = mtotal(i, 1) + monval(i, j, 1)
     mtotal(i, 2) = mtotal(i, 2) + monval(i, j, 2)
   Next j
Next i
For i = 1 To 12
   gtotal = gtotal + mtotal(i, 1)
   gentries = gentries + mtotal(i, 2)
Next i
' the info has to be written onto the spreadsheet....
Row = ActiveCell.Row + 35
col = ActiveCell.Column + 3
gmean = gtotal / gentries
For i = 0 To 22 Step 2
   Cells(Row, col + i). Value = mtotal(1 + (i/2), 1)
   If mtotal(1 + (i/2), 2) \Leftrightarrow 0 Then
     Cells(Row + 1, col + i). Value = mtotal(1 + (i/2), 1) / mtotal(1 + i/2, 2)
      Cells(Row + 1, col + i). Value = mtotal(1 + (i/2), 1) / mtotal(1 + (i/2), 2)
      Cells(Row + 1, col + i - 1). Value = mtotal(1 + (i/2), 2)
      Cells(Row + 2, col + i).Value = gmean / Cells(Row + 1, col + i).Value
   Else
      Cells(Row + 1, col + i).Value = 0
      Cells(Row + 1, col + i - 1).Value = 0
      Cells(Row + 2, col + i).Value = 0
   End If
   i = (i/2) + 1
   For k = 1 To 7
      If monval(j, k, 1) \Leftrightarrow 0 And monval(j, k, 2) \Leftrightarrow 0 Then
        Cells(Row + 2 + k, col + i).Value = gmean / (monval(j, k, 1) / monval(j, k, 2))
        Cells(Row + 2 + k, col + i - 1).Value = monval(j, k, 2)
      Else
        Cells(Row + 2 + k, col + i).Value = 0
        Cells(Row + 2 + k, col + i - 1).Value = 0
      End If
```

### Next k

### Next i

```
Cells(Row, 27). Value = gtotal
Cells(Row, 28). Value = gentries
Cells(Row + 1, 27). Value = gmean
```

End Sub

### Module 2

### ' comrem Macro

## ' Keyboard Shortcut: Ctrl+c

### Sub comrem()

ActiveCell.Range("A1:AB53").Select

Selection.ClearContents

ActiveCell.Rows("1:1").EntireRow.Select

Selection.Delete Shift:=xlUp

Selection.Delete Shift:=xlUp

Selection.Delete Shift:=xlUp

ActiveCell.Rows("1:50").EntireRow.Select

Selection.Delete Shift:=xlUp

ActiveCell.Rows("1:1").EntireRow.Select

Selection.Insert Shift:=xlDown

Selection.Insert Shift:=xlDown

ActiveCell.Offset(1, 0).Rows("1:1").EntireRow.Select

Selection.Insert Shift:=xlDown

Selection.Insert Shift:=xlDown

Selection.Insert Shift:=xlDown

ActiveCell.Rows("1:2").EntireRow.Select

Selection.Delete Shift:=xlUp

ActiveCell.Offset(0, 0).Range("A1").Select

End Sub

<sup>&#</sup>x27; Macro5 Macro

<sup>&#</sup>x27; Keyboard Shortcut: Ctrl+j

Sub Macro5()
ActiveCell.Offset(50, 0).Range("A1").Select
End Sub

### 'Macro6 Macro

# ' Keyboard Shortcut: Ctrl+d

Sub Macro6()
ActiveCell.Range("A1:X10").Select
Selection.ClearContents
ActiveCell.Select
Application.Run Macro:="factors.xls!Macro5"
End Sub

### 'Cruncher Macro

# ' Keyboard Shortcut: Ctrl+m

Sub Cruncher()
Sheets("Raw-data").Select
no\_of\_stat = Cells(1, 11).Value
For i = 1 To no\_of\_stat
Application.Run Macro:="factors.xls!test1"
ActiveCell.Offset(50, 0).Range("A1").Select
Next i
ActiveCell.Offset(-50 \* no\_of\_stat, 0).Range("A1").Select
End Sub

### **Delete Module**

### ' Macro7 Macro

# ' Keyboard Shortcut: Ctrl+y

Sub Macro7()

ActiveCell.Offset(35, 3).Range("A1").Select Application.Run Macro:="Factors.xls!Macro6" Application.Run Macro:="Factors.xls!Macro6"

```
Application.Run Macro:="Factors.xls!Macro6"
  ActiveWindow.ScrollRow = 1
  ActiveCell.Offset(-2485, -3).Range("A1").Select
End Sub
Module 3
' gen_top_3_rows Macro
' Keyboard Shortcut: Ctrl+a
Sub gen top 3 rows()
  Application.Run Macro:="factors.xls!delete_cluster_sheets"
  Sheets("intro").Select
  Selection.Font.Bold = True
  With Selection.Font
    .Name = "Arial MT"
    .Size = 14
    .Strikethrough = False
    .Superscript = False
    .Subscript = False
    .OutlineFont = False
    .Shadow = False
    .Underline = xlNone
    .ColorIndex = xlAutomatic
  End With
  ActiveCell.FormulaR1C1 = "ANNUAL PATR SUMMARY TABLE :"
  Range("H1").Select
  Selection.Font.Bold = True
  ActiveCell.FormulaR1C1 = "Total number of stations:"
  Range("H2").Select
  Selection.Font.Bold = True
  ActiveCell.FormulaR1C1 = "Total number of clusters:"
  Range("A1").Select
End Sub
gen layout for_each_stat Macro
Sub gen layout for each_stat()
  Dim mon days(12)
   y = Cells(1, 6).Value
   t = y - 1995
```

```
tot = 365 * t
For i = 1995 To (y - 1)
  If (i Mod 4) = 0 Then tot = tot + 1
Next i
starting_day = tot Mod 7 + 1
If (y Mod 4) = 0 Then tot_no_of_days = 366 Else tot_no_of_days = 365
mon days(1) = 31
If (y \text{ Mod } 4) = 0 Then mon days(2) = 29 Else mon_days(2) = 28
mon days(3) = 31
mon days(4) = 30
mon days(5) = 31
mon days(6) = 30
mon days(7) = 31
mon_days(8) = 31
mon days(9) = 30
mon days(10) = 31
mon days(11) = 30
mon days(12) = 31
r = ActiveCell.Row
c = ActiveCell.Column
x = r + 3
y = 3
d = starting day
mon = 1
end of mon = mon_days(mon)
For cc = 1 To tot no of days
  If (d \text{ Mod } 7) = 0 Then Cells(x, y). Value = 7 Else Cells(x, y). Value = d Mod 7
  x = x + 1
  d = d + 1
  If (cc = end of mon) Then
     x = r + 3
     y = y + 2
     mon = mon + 1
     If cc < 365 Then end of mon = end_of mon + mon_days(mon)
```

### End If

#### Next cc

### End Sub

## 'build\_station\_table Macro

## ' Keyboard Shortcut: Ctrl+y

Sub build station table()

ActiveCell.FormulaR1C1 = "PATR"

ActiveCell.Offset(0, 2).Range("A1").Select

ActiveCell.FormulaR1C1 = "NAME"

ActiveCell.Offset(2, -2).Range("A1").Select

ActiveCell.FormulaR1C1 = "DATE"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "1"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "2"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "3"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "4"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "5"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "6"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "7"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "8"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "9"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "10"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "11"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "12"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "13"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "14"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "15"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "16"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "17"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "18"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "19"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "20"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "21"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "22"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "23"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "24"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "25"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "26"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "27"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "28"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "29"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "30"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "31"

ActiveCell.Offset(2, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "TOTAL"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "MADT"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "MONTHLY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "SUNDAY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "TUESDAY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "WEDNESDAY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "THURSDAY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "FRIDAY FACTOR"

ActiveCell.Offset(1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "SATURDAY FACTOR"

ActiveCell.Offset(-5, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "SUNDAY FACTOR PER MONTH"

ActiveCell.Select

ActiveCell.FormulaR1C1 = "SUNDAY FACTOR"

ActiveCell.Offset(1, 0).Rows("1:1").EntireRow.Select

Selection.Insert Shift:=xlDown

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "MONDAY FACTOR"

ActiveCell.Offset(-37, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "JAN"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "FEB"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "MAR"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "APR"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range ("A1").Select

ActiveCell.FormulaR1C1 = "MAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "JUN"

ActiveCell.Offset(0, 1).Range("A1").Select

ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "JUL" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "AUG" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "SEP" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "OCT" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "NOV" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DAY" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "DEC" ActiveCell.Offset(34, 2).Range("A1").Select ActiveCell.FormulaR1C1 = "AADT" ActiveCell.Offset(1, 0).Range("A1").Select ActiveCell.FormulaR1C1 = "MCV" ActiveCell.Offset(-37, -27).Range("A1").Select End Sub

# 'Ass\_col\_wid Macro

# ' Keyboard Shortcut: Ctrl+x

Sub Ass\_col\_wid()
Columns("A:AB").Select
Selection.ColumnWidth = 8.63
Columns("B:B").Select
Selection.ColumnWidth = 21.88
Range("A1").Select
End Sub

build comp layout Macro

```
' Keyboard Shortcut: Ctrl+w
Sub build comp layout()
  Application.Run Macro:="factors.xls!gen_layout_for_each_stat"
  Application.Run Macro:="factors.xls!build_station_table"
  ActiveCell.Offset(0, 7).Range("A1").Select
  ActiveCell.FormulaR1C1 = "Cluster"
  ActiveCell.Offset(0, -7).Range("A1").Select
End Sub
'setup layout Macro
' Keyboard Shortcut: Ctrl+b
Sub setup layout()
  no of stat = Cells(1, 11). Value
  For i = 1 To no of stat
    Application.Run Macro:="factors.xls!build_comp_layout"
    ActiveCell.Offset(50, 0).Range("A1").Select
  Next i
   Application.Run Macro:="factors.xls!get_to_top"
End Sub
Module 4
'build_table_2 Macro
Sub build table 2()
  ActiveCell.Columns("A:K").EntireColumn.Select
  With Selection
     .HorizontalAlignment = xlCenter
     .VerticalAlignment = xlBottom
     .WrapText = False
     .Orientation = xlHorizontal
  End With
  ActiveCell.Select
  ActiveCell.FormulaR1C1 = "Cluster"
  ActiveCell.Offset(0, 1).Range("A1").Select
  ActiveCell.FormulaR1C1 = "Sunday factor"
```

ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Monday factor" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Tuesday factor" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Wednesday factor" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Thursday factor" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Friday factor" ActiveCell.Offset(0, 1).Range("A1").Select ActiveCell.FormulaR1C1 = "Saturday factor" ActiveCell.Offset(0, -7).Columns("A:H").EntireColumn.Select Selection.Columns.AutoFit ActiveCell.Rows("1:1").EntireRow.Select Selection.Font.Bold = True ActiveCell.Offset(1, 0).Range("A1").Select End Sub

### Module 5

# ' Delete\_cluster\_sheets Macro

Sub Delete\_cluster\_sheets()
Sheets("Cluster-sheet").Select
Cells.Select
Selection.Clear
Range("A1").Select
Sheets("Cluster-sheet-2").Select
Cells.Select
Selection.Clear
Range("A1").Select
Sheets("Raw-data").Select
Range("A1").Select
End Sub

### **SAS Module**

'SAS\_DOWNLOAD\_PROC Macro

' Macro recorded 5/26/97 by Preferred Customer

```
Sub SAS DOWNLOAD_PROC()
  Dim nos As Integer, i As Integer, j As Integer, fc As String
  Dim patr As String
  Dim fac(12) As Double
  Application.Run Macro:="factors.xls!delete_SAS_UPload_sheet"
  Sheets("Raw-Data").Select
  nos = Cells(1, 11).Value
  For i = 1 To nos
     patr = Cells(50 * (i - 1) + 5, 1).Value
    patr = Right$(patr, Len(patr) - 6)
    fc = Cells(50 * (i - 1) + 5, 13).Value
     For i = 1 To 12
       fac(j) = Cells(50 * (i - 1) + 42, 4 + (j - 1) * 2).Value
     Next i
     Sheets("SAS_upload").Select
     Cells(i, 1).Value = patr
     For j = 1 To 12
       Cells(i, 2).Value = fc
       Cells(i, j + 2).Value = fac(j)
     Next j
     Sheets("Raw-Data").Select
  Next i
End Sub
'delete SAS Upload sheet Macro
'Macro recorded 5/26/97 by Preferred Customer
Sub delete SAS_Upload_sheet()
  Sheets("SAS_upload").Select
  Cells.Select
  Selection.ClearContents
  Range("A1").Select
End Sub
```

|  |  | : |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

### APPENDIX 8

### Seasonal Factors for all Clusters

The following seven pages show the factors computed for each cluster based on 1995 traffic count data.

Each page contains information for two clusters, with a continuation on the following page.

The last cluster (cluster # 6) does not actually exist. It is an extra cluster that contains all sites that were not used in forming the clusters (due to insufficient data). The last two columns contain, on the first line, the total volume and total number of days for which data were recorded during the year.

On the second line the AADT is entered.

The last page contains the day-of-the-week factors for each of the clusters.

|                         |      | _           |          |     |            |     |          |          |     |         |          |     |               | -     | -   |          |     | _             |          |
|-------------------------|------|-------------|----------|-----|------------|-----|----------|----------|-----|---------|----------|-----|---------------|-------|-----|----------|-----|---------------|----------|
|                         | ) ac |             | lan      | Dav | Feb        | Dav | Mar      |          | Day | Apr     | Δ        | Day | May           | Day   |     | June     | Day | July          | ly       |
| Total                   | (P)  | 76          | 31035    | 89  | _          |     | 80 26    | 2682778  |     | 68 245  | 2457288  | 114 | 4 3830058     |       | 83  | 3145027  |     | 97            | 3510943  |
| MADT                    |      |             | 26724 14 |     |            |     | -        | 33534.73 |     | 361;    | 36136.59 |     | 33            | 33597 |     | 35337.38 | 1   | 3             | 36195.29 |
| Monthly Eactor          |      | -           | 1 230498 |     | 1.129433   |     | 0.9      | 0.980596 |     | 0.90    | 0.909992 |     | 0.978778      | 1778  |     | 0.930573 | -   | 0             | 0.908516 |
| Sunday Factor           |      | 7.          | 1 567558 | 12  |            |     | 9 1.1    | 1.122866 |     | 13 1.07 | 1.075926 | 15  | 5 1.151611    | 611   | 12  | 1.031318 | ~~  | 16 0          | 0.966562 |
| Monday Factor           |      |             | 1 107414 | 13  |            |     | -        | 0.998968 |     | ٠       | 0.929767 | 18  | 8 0.995922    | 325   | 12  | 0.99399  | _   | 16 0          | 0.972986 |
| Tuesday Factor          |      | 1           | 1 148492 | 13  | 1          |     | ↓_       | 0.996287 |     | 7 0.93  | 0.930091 | 18  | 8 1.008173    | 1173  | 12  |          |     | 1             | 1.029655 |
| Wodnosday Engler        | 3    |             | 1 006888 | 13  | 1_         |     | 16 1.0   | 1.057655 |     | 8 0.91  | 0.919193 | -   | 18 0.996559   | 1559  | 11  | 0.984594 |     | 12 0          | 0.958853 |
| Thursday Factor         | 3    |             | 1 064113 | 13  |            |     | .1       | 0.992626 |     | 10 0.85 | 0.859935 | 15  | 5 0.946753    | 1753  | 15  | 0.916299 | •   | 12 0          | 0.914391 |
| Friday Factor           |      | ᆚ           | 1 14192  | 12  |            |     | 1        | 0.819376 |     | 10 0.77 | 0.773723 | -   | 15 0.80431    | 1431  | 15  | 0.774793 | *   | 13 0          | 0.781776 |
| Saturday Factor         |      |             | 1.350989 | 13  | 1          |     |          | 0.933209 |     | 13 0.90 | 0.907074 | ۳   | 15 1.002445   | 2445  | 12  | 0.90691  |     | 16 0          | 0.806123 |
|                         |      | -           |          |     |            |     |          |          |     | -       |          |     |               |       |     |          |     |               |          |
|                         |      | $\vdash$    |          |     |            |     |          |          |     |         |          |     |               |       |     |          |     | +             |          |
|                         |      |             |          |     |            |     |          |          |     | -       |          |     | -             |       |     |          |     |               |          |
|                         |      | $  \cdot  $ |          |     |            |     | -        |          |     |         |          |     |               |       |     |          |     | -             |          |
| Oto for Chapter aumhor. |      | +           |          |     |            |     | -        |          |     | +       |          |     |               |       |     |          |     | -             |          |
| •                       |      | +           |          |     |            |     | $\vdash$ |          |     |         |          |     |               |       |     |          |     | $ \cdot $     |          |
|                         |      | H           |          |     |            |     |          |          |     |         |          |     |               | Ĉ     |     | 00.1     |     | - -           | 19.16.   |
|                         | Day  | <u> </u>    | Jan      | Day | Feb        | Day | ≤        |          | Day | 2       |          | Day | =             | Day   | -   | 2        | Uay | 21            | ÁIT      |
| Total                   |      | 187         | 1362040  | 190 | L          |     | 165 16   | 1646775  | 2   | 200 20  | 2055107  | 229 |               | 3692  | 216 |          |     | 216           | 2355282  |
| MADT                    |      | -           | 7283.636 |     | 7428.674   |     | 66       | 9980.455 |     | 102     | 10275.54 |     | 10103.46      | 3.46  |     | 10332.27 |     |               | 10904.08 |
| Monthly Factor          |      |             | 1.332615 |     | 1.306597   | 4   | 3.0      | 0.972529 |     |         | 0.944601 |     |               | 6890  |     |          | •   | _             | 0.890151 |
| Sunday Factor           |      | 8           | 1.475778 | 27  | **         |     |          | 0.931733 |     |         | 0.911512 | 3   | $\rightarrow$ | 3036  | 29  |          |     |               | 0.836366 |
| Monday Factor           |      | 34          | 1.260224 | 27  | 7 1.32923  |     | 20 1.0   | 1.051374 |     |         | 1.034132 | 6   |               | 4368  | 29  |          | 7   |               | 0.9836   |
| Tuesday Factor          |      | 31          | 1.28498  | 27  | ├          |     | 25 1.0   | 1.072351 |     | 25 1.13 | 1.139262 | က   |               | 3363  | 27  | _        | 99  | - 1           | 1.064007 |
| Wednesday Factor        | tor  | 21          | 1.267304 | 27  | 7 1.432591 |     | L        | 1.074689 |     |         | 1.047202 | 3   | 37 1.055626   | 5626  | 78  |          | 4   |               | 0.998458 |
| Thursday Factor         |      | -           | 1.180124 | 28  | 8 1.248121 |     |          | 0.964797 |     | 24 0.89 | 0.891084 | 2   |               | 2691  | 36  |          | 9   | $\rightarrow$ | 0.922877 |
| Friday Factor           |      | 1           | 1.178827 | 27  | 7 1.055158 |     | 27 0.8   | 0.812669 |     | 27 0.7  | 0.779496 | e   | 30 0.749587   | 9587  | 37  | $\dashv$ | 7   | $\rightarrow$ | 0.762795 |
| Saturday Factor         |      | 27          | 1.719888 | 27  | 7 1.505273 |     | 20 0.9   | 0.967619 |     | 35 0.92 | 0.926058 | 3   | 30 0.986618   | 9618  | 8   | 0.899163 | 8   | 35            | 0.793454 |
|                         |      |             |          |     |            |     | -        |          |     |         |          |     |               |       |     |          |     | +             |          |
|                         |      |             |          |     |            |     |          |          |     |         |          |     |               |       |     |          |     |               |          |
|                         |      | T           |          |     |            |     |          |          |     |         |          |     |               |       |     |          |     |               |          |
|                         |      |             |          |     |            |     |          |          |     |         |          |     |               |       |     |          |     | 1             |          |

|             |         | 1064      | AADT     |          |          |          |          |          |          |          |          |        |  |  |   |         |         | 2525    | AADT          |          |          |          |          |          |          |          |          |   |  |  |
|-------------|---------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------|--|--|---|---------|---------|---------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|---|--|--|
|             |         | 34988592  | 32884.02 |          |          |          |          |          |          |          |          |        |  |  |   |         |         | "       | 9706.281 AADT |          |          |          |          |          |          |          |          |   |  |  |
|             |         |           | 28069.54 | 1.17152  | 1.414113 | 1.279583 | 1.072653 | 1.229386 | 1.215102 | 1.013517 | 1.107633 |        |  |  |   |         | Dec     | 1916437 | 8632.599      | 1.124375 | - 1      | ,        | - 1      | - 1      | 1.       |          | 1.098658 |   |  |  |
|             |         | 92        |          |          | 12       | 11       |          | 6        | 8        | 13       | 13       |        |  |  |   |         | Day     | 222     |               |          | 38       | 29       | 26       | 25       | 27       | 38       | 33       |   |  |  |
|             | Nov Day | 2642554   | 30727.37 | 1.070186 | 1.06625  | 1.113614 | 1.07355  | 1.058874 | 1.157404 | 0.948621 | 1.079529 |        |  |  |   |         | Nov     | 2258224 | 9733.724      | 0.997181 | 0.86804  | 1.08609  | 1.091276 | 1.03168  | 1.078403 | 0.87395  | 0.984809 |   |  |  |
|             |         | 98        | 3        | -        | 11       | 12 1     | 11       | 14       | 15 1     | 12 (     | 11       |        |  |  | + |         | Dav     | 232     |               |          | 31       | 32       | 30       | 39       | 38       | 31       | 31       |   |  |  |
|             | Oct Day | 2945612   | 32369.36 | 1.015899 | 1.090451 | 1.058716 | 1.075149 | 1.056045 | 0.950073 | 0.853436 | 1.021198 |        |  |  |   |         | Oct     | 79042   | 9908.878      | 0.979554 | ᆫ        | 1.041145 |          | <u> </u> | 1.003773 | 0.787257 | 0.985313 |   |  |  |
|             | Dav     | 91        | -        |          | 15       |          | 15       | 12       |          | 1        |          |        |  |  |   |         | ) And I | 230     |               |          | 36       | 36       | 38       | 30       | 30       | 30       | 30       |   |  |  |
| ) (pant     | Sen     | 79958     | 3469R 29 | 0 947713 | 1 1096   | 0 947654 | 0.979382 | 0 974336 | 0 949664 | 0 788483 | 0.985594 |        |  |  |   | inued)  | 000     | 2103164 | 9736.87       | 0.996858 | 1.032121 | 0.998727 | 1.108931 | 1.135554 | 1.067437 | 0.805788 | 0.974317 |   |  |  |
| (continued) | 700     | 83        |          |          | 1.       | -        |          |          | _        | -        |          |        |  |  |   | 2 (cont |         | 246     | 217           |          | 29       | 29       | 29       | 29       | 28       | 36       | 36       |   |  |  |
| number 1    |         | AUG 20774 | 4130774  | 33969.34 | 0.913713 | 0.903343 | 0.950000 | 0.963181 | 0.903402 | 0.003230 | 0.7013   | 0.0000 |  |  |   | number  |         |         | 44600 84      | 0 83669  | 0.2222   | 0.00153  | 1 004915 | 0.969517 | 0.842803 | 0 68935  | 0.752104 |   |  |  |
| Cluster     |         | •         | CIL      |          |          | - 1      |          |          | 707      |          |          |        |  |  |   | Cluster |         |         | 777           |          | 30       | 800      | 37       | 37       | 3        | 3 8      | 30       | 3 |  |  |

| Day         Mar         Day         A           414         2190353         204         1347581         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378         378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-------------|
| Day   Jan   Day   Feb   Day   Mar   Day   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | _           |             |
| Day   Jan   Day   Feb   Day   Mar   Day   A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |             |
| Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Day May Day | June Day    |             |
| 1,127,1289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 546 3428867 | 467 2826976 | 506 3173280 |
| 1,271,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6279.976    | 6053.482    | 6271.304    |
| 1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120   1.127120    | 0.946376    | 0.981785    |             |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71 1.118313 | 64 1.157218 | 84 1.093159 |
| 40         1.140417         50         1.150303         25         1.050303         25         1.050304         53         1.050304         53         1.050304         53         1.030456         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         53         1.0302796         54         1.0302796         54         1.0302796         52         1.0302796         52         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796         1.0302796 <t< td=""><td>88 0.968116</td><td>63 0.986975</td><td>82 0.947171</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88 0.968116 | 63 0.986975 | 82 0.947171 |
| cor         24         1,030156         58         1,058495         20         20,02796         53           cor         24         1,034203         57         1,10982         31         0,902796         53           or         28         0,964529         59         1,070331         32         0,88102         51           or         31         0,974051         59         0,987989         37         0,802385         51           or         35         1,282406         61         1,213215         27         0,940504         62         0           or         35         1,282406         61         1,213215         27         0,940504         62         0           d         36         2892658         68         1748842         67         2000637         52           r         16         1,140682         1,351483         7         1,163174         9           r         16         1,140682         1,351483         7         1,133775         5           r         17         1,139497         9         1,221342         9         1,22382         8           r         17         1,139497         9 <td><u> </u></td> <td>63 0.978042</td> <td>65 0.98855</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>    | 63 0.978042 | 65 0.98855  |
| ctor         24         1.034203         57         1.10982         31         0.802780         30           or         28         0.964529         59         1.070331         32         0.88102         51           or         31         0.974051         61         1.213215         27         0.940504         62         6           or         35         1.282406         61         1.213215         27         0.940504         62         6           or         35         1.282406         61         1.213215         27         0.940504         62         6           d         Day         Jan         Day         Mar         Day         Mar         Day         A           r         1.140682         68         1748842         67         200637         52           r         16         1.514231         10         1.915588         9         1.26189         1.268192         9           r         16         1.514231         10         1.915588         9         1.261342         6         1.261342         7         1.138275         5           r         10         10.989255         10         1.107939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +-          |             | 62 0.898295 |
| or         28         0.964529         59         1.070331         32         0.86102         51         0.974051         59         0.987989         37         0.802385         51         62         62         62         62         63         62         63         62         63         62         63         62         63         62         63         62         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63         63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | _           |             |
| 31         0.974051         59         0.987989         37         0.802385         51         0.974054         62         0           1         35         1.282406         61         1.213215         27         0.940504         62         0           4         4         61         1.213215         27         0.940504         62         0           4         6         61         1.213215         61         62         0           4         62         63         1.248842         64         1.248842         67         2000637         52           7         1.140682         68         1748842         67         2000637         52           8         2892658         68         1748842         67         2000637         52           9         1.140682         1.350506         1.163174         9         1.268192         9           1         1.140682         9         1.251483         7         1.138275         5           1         1.1         0.988085         9         1.221342         9         1.202382         8           1         0.980752         10         1.107939         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -           |             | ١٥          |
| In         35         1.282406         61         1.213215         27         0.940504         62         02           4         4         4         4         62         63         64         64         65         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |             |             |
| 4  Day Jan Day Feb Day Mar Day A Mar Day 1.163174  1.140682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | /0 0.847800 |             |             |
| 4 Day Jan Day Feb Day Mar Day A Day He Day Hor |             |             |             |
| 4       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |             |
| 4 Day Jan Day Feb Day Mar Day A 1.140682 1.350506 1.163174 T 1.139497 9 1.351483 7 1.138275 5 Day 1.203597 11 1.255411 7 Day Jan Day Feb Day Mar Day A 1.140682 1.350506 1.163174 Day 1.360506 1.268192 9 Dr 17 1.139497 9 1.351483 7 1.138275 5 Dr 14 0.988085 9 1.221342 9 1.203382 8 Dr 12 0.980752 10 1.203597 11 1.255411 7 Day Jan Day Feb Day Mar Day A Day Jan Day Feb Day Mar Day A Day Jan Day Heb Day Mar Day A Day Jan Day B Day Day Day Day Day A Day Day Day Day Day A Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |             |
| 4       Amon Day       Feb Day       Mar Day       Day       Amon Day       Feb Day       Mar Day       Day       Amon Day       Amon Day       Feb Day       Mar Day       Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |             |
| 4         Day         Feb         Day         Mar         Day         Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |             |
| Day         Jan         Day         Feb         Day         Mar         Day         As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |             |             |
| Day         Jan         Day         Feb         Day         Mar         Day         A           1         95         2892658         68         1748842         67         2000637         52           1         30449.03         25718.26         29860.25         25860.25         1.163174           1         1.140682         1.350506         1.163174         9         1.268192         9           1         1         1.139497         9         1.351483         7         1.138275         5           ay Factor         14         0.988085         9         1.221342         9         1.202382         8           esday Factor         12         0.989255         10         1.183985         11         1.255411         7           Factor         12         0.980752         10         1.183985         11         1.213045         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | •           |             |
| Uay         Jain         Day         Jain         Jain <td>Day May Day</td> <td>7</td> <td>July</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day May Day | 7           | July        |
| ly Factor     1.140682     25718.26     29860.25       ny Factor     1.140682     1.350506     1.163174       ny Factor     17     1.139497     9     1.351483     7     1.138275     5       ay Factor     14     0.988085     9     1.221342     9     1.202382     8       esday Factor     11     0.989255     10     1.203597     11     1.255411     7       Factor     12     0.980752     10     1.183985     11     1.213045     7       Factor     12     1.044722     10     1.107939     12     0.98565     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65 2097843  | 84 3133779  | 109 4440297 |
| ly Factor         1.140682         1.350506         1.163174           ly Factor         16         1.514231         10         1.915588         9         1.268192         9           ay Factor         17         1.139497         9         1.351483         7         1.138275         5           ay Factor         14         0.988085         9         1.221342         9         1.202382         8           esday Factor         11         0.989255         10         1.203597         11         1.255411         7           day Factor         12         0.980752         10         1.183985         11         1.213045         7           Factor         12         1.044722         10         1.107939         12         0.98565         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32274.51    | 37306.89    | 40736.67    |
| 16     1.514231     10     1.915588     9     1.268192     9       17     1.139497     9     1.351483     7     1.138275     5       14     0.988085     9     1.221342     9     1.202382     8       10     1.1     0.989255     10     1.203597     11     1.255411     7       12     0.980752     10     1.183985     11     1.213045     7       12     1.044722     10     1.107939     12     0.98565     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.076164    | 0.930999    | 0.852614    |
| 17     1.139497     9     1.351483     7     1.138275     5       14     0.988085     9     1.221342     9     1.202382     8       3for     11     0.989255     10     1.203597     11     1.255411     7       7     12     0.980752     10     1.183985     11     1.213045     7       7     12     1.044722     10     1.107939     12     0.98565     7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 1.177206  | 12 1.045265 | 18 0.934165 |
| tor 12 0.980752 10 1.183985 12 0.98565 7 1 1.204722 10 1.107939 12 0.98565 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 1.073032 | 12 0.957803 | _           |
| tor 11 0.989255 10 1.203597 11 1.255411 7 7 12 0.980752 10 1.183985 11 1.213045 7 12 1.044722 10 1.107939 12 0.98565 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 1.10075  | 11 1.017341 | 13 0.98646  |
| 12         0.980752         10         1.183985         11         1.213045         7           12         1.044722         10         1.107939         12         0.98565         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 1.092088 | 11 0.937765 | 14 0.879746 |
| 12 1.044722 10 1.107939 12 0.98565 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 1.08026   | 13 0.905095 | 15 0.828041 |
| 12 1.044/22 10 1.10/939 12 0.90303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9           | 14 0.77992  | 15 0.713687 |
| 0 011010 1 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 0           | 18 0.778077 |
| 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -           |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |             |

|             | 5182     | TUV           | 5        |          |          |          |          |          |          |          |          |           |   |   |   |   |   |             |        |     | //01    | AAD          |          |          |             |          |          |          |          |          |      |  |  |
|-------------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|---|---|---|---|---|-------------|--------|-----|---------|--------------|----------|----------|-------------|----------|----------|----------|----------|----------|------|--|--|
|             | 20707760 | ED42 224 AANT | 3943.441 |          |          |          |          |          |          |          |          |           |   |   |   |   |   |             |        |     | -       | 34732.67 AAU |          |          |             |          |          |          |          |          |      |  |  |
|             | Dec      | 2110017       | 3104.134 | COSUCT.  | 1.386098 | 1.202705 | 1.103942 | 1.164296 | 1.151286 | 0.996067 | 1.130621 |           |   |   |   |   |   |             |        |     |         | 32032.27     |          | 1        | - 1         | - 1      | -+       | -4       |          | 1.144236 |      |  |  |
|             |          | 4 18          |          |          | 89       | 22       | 55       | 20       | 49       | 70       | 72       |           |   |   |   |   |   |             |        | Day | 108     |              |          | 20       | 15          | 13       | =        | =        | 19       | 19       |      |  |  |
|             | _        | 241/695       | 5177.077 | 1.147988 | 1.389072 | 1.081286 | 1.161101 | 1.114407 | 1.144233 | 1.009679 | 1.215813 |           |   |   |   |   |   |             |        |     | 3490778 | 34562.16     | 1.004933 | 0.983564 | 0.980375    | 1.002278 | 0.969838 | 1.089331 | 0.948878 | 1.073212 |      |  |  |
|             | <u> </u> | 467           | 43       | 1        |          |          |          |          | 78       | 1        | 83       |           |   |   |   |   |   |             |        | Day | 101     |              |          | 14       | 16          | 14       | 15       | 15       | 13       | 14       |      |  |  |
|             |          | 3246060       | 6242.423 | 0.952069 | 1.145699 | 0.943277 | 0.941468 | 0.936982 | 0.915836 | 0.814906 | 0.99203  |           |   |   |   |   |   |             |        | Oct | 4569511 | 37764.55     | 0.919716 | 1.015484 | 0.913035    | 0.926905 | 0.919937 | 0.88421  | 0.774195 | 1.023653 |      |  |  |
|             | J        | 520           | 9        | 0        | 84       | 84 0     | 84       | ) /9     | +        |          | +        |           | - |   |   | + |   |             |        | Day | 121     |              |          | 20       | 20          | 20       | 16       | 15       | 15       | 15       |      |  |  |
| (pen        | sp Day   | 3207447       | 6109.423 | 0.972796 | 1.201396 | 1,008373 | 0.940945 | 0.956726 | 0 940632 | 0.846099 | 1 005157 |           |   |   |   |   |   | (baile      | 1      | Seo | 16851   | 37769.28     | 0.919601 | 1.085351 | 0.939723    | 0.942913 | 0.955274 | 0.8753   | 0.758178 | 0.983345 |      |  |  |
| (continued) | Day Sep  | 525 3         | 9        | 0        | 71 1     | 71 1     | ┿        |          | +-       |          |          |           | - | + |   | - |   | (continued) | 1      | Dav | 109     |              |          | 15       | .1          | 14       | <u> </u> |          |          |          |      |  |  |
| number 3    | Aug      | 3185252       | 6383.271 | 0.931062 | 1.099629 | 0 918545 | 0 933916 | 0 030200 | 0.330133 | 0.000033 | 0.05200  | 0.3005.00 | + |   |   |   | - | / rodmin    | Hamber | Air | 12375   | 38901.79     | 0.89283  | 0.945867 | 14 0.931021 | 0.94952  | 0 935064 | 0.366321 | 0.763278 | 0 86969  | 2000 |  |  |
| Cluster n   | Day      | 499           |          | 0        | 64 1     |          |          |          |          | 4        |          |           |   |   | + |   |   | _           | Tarsni | 7   | 90      | 3            |          | 13       |             | 16       |          |          |          | 2 6      | 2    |  |  |

| A . To House               |     |              |     |             |      |             |        | -            |          |     |             |     | +      | +        |     |             |
|----------------------------|-----|--------------|-----|-------------|------|-------------|--------|--------------|----------|-----|-------------|-----|--------|----------|-----|-------------|
| ata for Cluster number : 5 |     |              |     |             |      |             |        |              |          |     |             |     | -      | -        |     |             |
|                            |     |              |     |             |      |             |        | -            |          |     | May         | Dav | auril. |          | Dav | July        |
|                            | Day | Jan          | Day | <u> </u>    | Day  | -1          | nay    | <u> </u>     | 2000     | Day | _           | (5) | 262 30 | 6916     | 268 |             |
| Total                      | 156 | 6 1335389    | 187 | 7 2066910   | 130  |             |        | 155          | CDSSEQL  | C07 | _           |     | 4      | 44504 20 |     |             |
| MADIT                      |     |              | 100 | 11052.99    |      | 10331.34    | 34     | <del>-</del> | 10960.03 |     | 11919.44    | 4 ( |        | 02.180   |     | 770000      |
|                            |     | 4 273002     |     | 0.985899    | -    | 1.054765    | .65    | <u>o</u>     | 0.994261 |     | 0.914232    | 2   |        | 0.940115 |     | 1_          |
| Monthly Factor             | ľ   |              |     | 1 41140     |      | 16 1 342208 | 90     | 25 1.        | 1.385657 | 35  | 1.179158    | 8   |        | 1.192254 | 44  |             |
| Sunday Factor              | 7   | -            |     | ١ç          |      |             | 86     |              | 1.005773 | 43  | 0.948475    | 3   | 36 0.9 | 0.921971 | 43  | _           |
| Monday Factor              | 7   | <u>-  </u>   |     | 20 0.924932 |      |             | 73     |              | 0.961723 | 42  | 0.92959     | 6   | 36 0.9 | 0.916076 | 33  | 1.029332    |
| Tuesday Factor             | 7   | 1            |     | 7           |      | 4           | 2 5    | -            | 0 037381 | 42  | 1           | 5   |        | 0.935957 | 34  | 0.94161     |
| Wednesday Factor           | -   | 18 1.138835  |     | 丄           |      | -           | 2      |              | 0.337.30 | 2   |             | īč  |        | 0.905536 | 36  | 12          |
| Thursday Factor            | .7  | 20 1.096429  |     | 1           |      | _           | 747    | _            | .034401  | 25  | L_          | 2 2 |        | 0 832497 | 35  |             |
| Friday Factor              |     | 16 1.107616  |     | 28 0.870157 |      |             | 515    |              | 0.8301/4 | 20  |             | 3 4 |        | 0.096765 | 43  |             |
| Caturday Factor            |     | 23 1.518066  |     | 27 1.086844 |      | 16 1.146147 | 147    | 28 1         | 1.039127 | 30  | 0.99233     | 2   |        | 2000     | ř   | _1_         |
|                            |     |              |     |             |      |             | -      |              |          |     |             |     |        |          |     |             |
|                            |     |              |     |             |      |             |        | 1            |          |     |             |     | -      |          |     |             |
|                            |     |              |     |             |      |             | -      | +            |          |     |             |     | +      |          |     |             |
|                            |     |              |     |             |      |             |        |              |          |     |             | -   |        |          |     |             |
|                            |     |              |     |             |      | 1           | 1      | -            |          |     |             |     |        |          |     |             |
| Data for Cluster number: 6 |     |              |     |             |      |             | -      | -            |          |     |             |     |        |          |     |             |
|                            |     |              |     |             |      | -           | -      |              |          |     |             |     |        |          |     |             |
|                            | Ž   | uc           | )ac | Feb         | Dav  | Mar         | Day    | 4            | 1        | Day | ž           | Day | 릐      |          | Day | 引           |
|                            | -   | 26507        |     | 54027       | +-   | 9           | 6921   | 42           | 82897    | 61  | _           | 99  | 09     | 119854   | 9   | -           |
| Total                      |     | 130          |     | 10          | 3    | L           | 1153.5 |              | 1973.738 |     | 1937.148    | 48  | ¥      | 1997.567 |     | 2254.667    |
| MAU!                       |     | 1 364914     | 2 4 | 1.684039    | 6    | 1.54        | 54659  | <u> </u>     | 0.903864 |     | 0.920937    | 37  | - 1    | 0.893082 |     |             |
| Monuniy Factor             |     | 4 48468      | a c | 7 1 730351  | -    | 1 1.783992  | 992    | 7 (          | 0.852827 |     | 8 0.744532  | 32  |        | 0.757373 |     | _           |
| Sunday Factor              |     |              | 2 9 | 7 1 791927  | 7    | -           |        | 5            | 1.045471 | -   | 10 0.989842 | 42  | 8 1.   | 1.010474 |     |             |
| Monday Factor              |     | 1            | 2 0 | ┩           | . 00 |             |        | 1_           | 1.042782 | -   | 10 1.111521 | 21  |        | 1.011763 |     |             |
| l uesday Factor            |     |              | 2 4 | A 1 703182  | 9 6  | 1 1 977818  | 818    | 9            | 1.018066 |     | 9 1.122243  | 43  | 8 1.   | 1.016737 |     | 8 0.892609  |
| Wednesday Factor           |     |              | 3 5 | _           | 1 -  | 2 1 239744  | 744    |              | 0.963192 |     | 8 1.036903  | 03  | 10 0.  | 0.980431 |     |             |
| Thursday Factor            |     |              | 70  |             | - 0  | _           | 376    |              | 0.792122 |     | 8 0.814469  | 69  | 10 0.  | 0.788226 |     | 8 0.731519  |
| Friday Factor              |     | 4 1.233/42   | 7.1 | -           | 200  | 2 2         | 700    |              | 0 770133 |     | 1           | 31  | 8      | 0.796692 | _   | 10 0.681902 |
| Saturday Factor            |     | 4   1.513782 | 32  | 7 1.794502  | 2    | 1.020337    | 357    |              | 13133    |     |             |     | 4      |          |     |             |

|              | 1010    | C0/Z     | AADI     |          |          |              | _        |          |          |          |          |          |  |  |  |     |             |       | 592    | AADT          |          |          |          |                                        |          |          |     | ,  |             |
|--------------|---------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|--|--|--|-----|-------------|-------|--------|---------------|----------|----------|----------|----------------------------------------|----------|----------|-----|----|-------------|
|              |         | 29476755 | 10897.14 |          |          |              |          |          |          |          |          |          |  |  |  |     | •           | li    |        | 1783.992 AADT |          |          |          |                                        |          |          |     |    |             |
|              | Dec     | 2404532  | 9895.193 | 1.101256 | 1.424858 | 1.13171      | 1.080261 | 1 023404 | 1 062444 | 0.050262 | 4 400400 | 1.100100 |  |  |  |     |             | Dec   | 61065  | 1174.327      | 1.519161 | 1.865233 | 1.696962 | 1.626246                               | 1.524345 | 1.364325 | 1   |    | 4           |
|              |         | 243      |          |          | 40       | 34           | 32       | 28       | 270      | 17       | + ;      | 4        |  |  |  |     |             | Day   | 52     |               |          | 9        | 7        | 7                                      | 9        | 5        | 6   | 6  | ` <br>      |
|              | Nov Day | 2761561  | 10500.23 | 1.0378   | 1.343577 | 0.973145     | 1 00647  | 1 008313 | 1,0000.1 | 1.033004 | 0.914115 | 1.088/68 |  |  |  |     |             | Nov D | 76765  | 1505.196      | 1.185222 | 1.129287 | 1.350778 | 1,355102                               | ┸        | -        |     | ┷- |             |
|              | Day     | 263      |          |          | 35       | <del> </del> |          | 20       | \$       | 44       | 32       | 35       |  |  |  |     |             | Day   | -      |               |          | 8        | 7        | 9                                      |          |          |     |    |             |
|              | Oct     | 2662649  | 11048.34 | 0.986315 | 1,280502 | 0.058163     | 000000   | 0.942909 | 0.932903 | 0.91582  | 0.860407 | 1.060828 |  |  |  |     |             | OC    | 121989 | 1999.82       | 0.892076 | -        |          | ــــــــــــــــــــــــــــــــــــــ |          | _        |     | 1  | 8 0.776239  |
|              | Day     | 241      |          |          | 40       | 2 0          | 2 6      | 8        | 31       | 31       | စ္တ      | 31       |  |  |  |     |             | Dav   | 5      | 5             |          | 10       | 10       | 0                                      | 0        |          | o a |    | <del></del> |
| (penu        | Sen     | 11083    | 11193.62 | 0.973513 | 1 281434 | 10000        | 1.003007 | 0.933434 | 0.941686 | 0.905629 | 0.844467 | 1.032402 |  |  |  | -   | (continued) | Con   | 0000   | 1028 15       | 0 020461 | 0 789464 | 0 968902 | 4440000                                |          | L        |     |    | 0.764317    |
| 5 (continued | VeC     | 269      |          |          | 36       | _1_          |          |          |          | 36       | 45       | 45       |  |  |  | - 1 | 6 (cont     | 3     | Udy    | 8             |          | α        | ο α      | 0                                      | 0        |          |     |    | 19          |
| number       |         | 2047807  | 11345 AR | 0.060483 | 0.300403 | 1.21/80      | 0.928048 | 0.929845 | 0.944255 | 0.90968  | 0.856078 | 1.022669 |  |  |  | ,   | numper      |       |        | 126273        | 2104.55  | 1        | 0.713023 | 0.901/65                               | 0.979139 |          |     |    | 0 719932    |
| Cluster      |         |          | 007      |          |          |              | 35       | 43       | 44       | 36       |          |          |  |  |  |     | Cluster     |       | Day    | 9             |          |          | 0        | Ω                                      | 10       | 10       | 8   | 8  | α           |

| Cluster | Cluster Sunday factor Monday factor | Monday factor | Tuesday factor | Tuesday factor Wednesday factor Thursday factor Friday tactor Saturday tactor | Thursday factor | Friday tactor | Saturday tactor |
|---------|-------------------------------------|---------------|----------------|-------------------------------------------------------------------------------|-----------------|---------------|-----------------|
| -       | 1.136987395                         | 1.040495478   | 1.034161053    | 1.024968853                                                                   | 0.97509197      | 0.845906913   | 0.985271396     |
| 7       | 0.992869991                         | 1.05848373    | 1.109334735    | 1.082622683                                                                   | 1.004453076     | 0.825003396   | 0.988665111     |
| က       | 1.204730283                         | 0.997917107   | 0.981352193    | 0.984724079                                                                   | 0.9676623       | 0.880533004   | 1.032092475     |
| 4       | 1.144200136                         | 1.020120928   | 1.012270526    | 0.991784183                                                                   | 0.963944409     | 0.853555088   | 1.052062173     |
| ß       | 1.311697107                         | 0.988080763   | 0.966343938    | 0.956801464                                                                   | 0.945379433     | 0.868204618   | 1.060109907     |
| 9       | 0.898253272                         | 1.106751727   | 1.146906328    | 1.118422416                                                                   | 1.070521809     | 0.888781694   | 0.882126981     |